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FOREWORD

This handbook has been produced by the Space Systems Division of

the Martin Company under Contract NAS8-5031 with the George C. Marshall

Spac@ Flight Center of the National Aeronautics and Space Administration.

The handbook expands and updates work previously done by the Martin

Company and also incorporates, as indicated in the text, some of the

work done by Space Technology Laboratories, Inc. and Norair Division of

Northrop Corporation under previous contracts with the George C. Marshall

Space Flight Center. The Orbital Flight Handbook is considered the

first in a series of volumes by various contractors, sponsored by MSFC,

treating the dynamics of space flight in s variety of aspects of

interest to the mission designer and evaluator. The primary purpose

of these books is to serve as a basic tool in preliminary mission plan-

ning. In condensed form, they provide background data and material

collected through several years of intensive studies in each space

mission area, such as earth orbital flight, lunar flight, and interplan-

etary flight.

Volume I, the present volume, is concerned with earth orbital

missions. The volume consists of three parts presented in three separate

books. The parts are:

Part 1 Basic Techniques and Data

Part 2 - Mission Sequencing Problems

Part 3 - Requirements

The Martin Company Program Manager for this project has been

Jorgen Jensen; George Townsend has been Technical Director. George

Townsend has also had the direct responsibility for the coordination

and preparation of this volume. Donald Kraft is one of the principal

contributors to this volume; information has also been supplied by

Jyri Kork and Sidney Russak. Barclay E. Tucker and John Magnus have

assisted in preparing the handbook for publication.

The assistance given by the Future Projects Office at MSFC and by

the MSFC Contract Management Panel, directed by Conrad D. Swanson, is

gratefully acknowledged.





CONTENTS

Volume I, Part 3 - Requirements

X Waiting Orbit Criteria ................ X-I

XI Orbit Computations .................. XI-I

XII Guidance and Control Requirements ........... XII-I

XIII Mission Requirements ................. XIII-I

Appendix A ...................... A-I

Appendix B ...................... B-I

Index ......................... i

The preceding contents are Part 3 of Volume I. The remaining two

parts of Volume I contain the following:

Volume I, Part 1 - Basic Techniques and Data

I Introduction ..................... I-i

II Physical Data ..................... II-i

III Orbital Mechanics ................... III-i

IV Perturbations ..................... IV-I

V Satellite Lifetimes .................. V-I

Volume I, Part 2 - Mission Sequencing Problems

VI Maneuvers ....................... VI-I

VII Rendezvous ...................... VII-I

VIII Orbital Departure ................... VIII-I

IX Satellite Re-Entry .................. IX-I





CHAPTER X

WAITING ORBIT CRITERIA

Symbols .................................

A. Introduction ..............................

B. Payload and Geometrical Restrictions .............

C. Vehicle Temperature Control ...................

D. Cryogenic Propellant Storage ..................

E. References ...............................

Illustrations ..............................

Page

X-I

X-2

X-2

X-4

X-IO

X-15

X-21



LIST OF ILLUSTRATIONS

Figure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Equilibrium Temperature of Inert Sphere .........

Equilibrium Temperature of a Thin Plate Normal to
the Sun ................................

Effect of Attitude on Equilibrium Temperature of a
Thin Plate Located at One Astronomical Unit from

the Sun ................................

Effect of Added Heat Input on Equilibrium Tempera-

ture ...................... , , . . . , , , , , , ,

Vapor Pressure of Cryogenic Fluids ............

Heat Transfer Rates of Cryogenic Insulations,
Thermal Conductivity Versus Vacuum Pressure ....

Thermal Conductivity at Various Wall Temperatures .

Heat Flux from Sun ........................

Solar Heating--Temperature of Outer Wall ........

Heat Transfer to Hydrogen and Oxygen ...........

No-Loss (Pre-Boiloff) Time--LH 2 Tank ..........

tQl T
+-System Factors (S) Versus Time S = Iw v " '

Propellant Boiloff Plus Insulation Weight at Optimum
Insulation Thickness for Spherical Tanks on the
Lunar Surface ...........................

Boiloff Losses for Liquids Contained in Spherical
Tanks, General Case ......................

Page

X-23

X-23

X-24

X-24

X-25

X-25

X-26

X-26

X-27

X-27

X-28

X-28

X-29

X-30

X-it



X. WAITING ORBIT CRITERIA

A

Ae°

e
P

G

k

l

L

P

P

Q

R

A.
t

SYMBOLS

Right ascension

Reference areas for emitted and inci-

dent energy

Specific heat at constant pressure

Solar flux

Thermal conductivity

Thickness

Latitude

Pressure

Unit vector to perigee

Transmitted heat flux

Unit vector to the injection point

T

W

o,

-y

E

0

A

v

0

O"

T

Unit vector specified by launch time and

time of flight to injection point

Absolute temperature

Weight

Absorptivity

Ratio of specific heats

Emissivity

True anomaly

Longitude

Heat of vaporization

Density

Ste fan-Boltzmann constant

Orbital period

X-1



A. INTI{OI)UCTION

In the pt'evious chapters of this manual, the,

concept of waiting orbits or parkin_ orbits wa._
introdueed. Ill SOllle of these diseussious ill{'

parking orbit was defined completely (i. c., all

six elements were obtained) by the mission to t)c

accomplished. The remh,zvuus discussion utilizin_

the intermediate orbit is an exanu)le of such cast.s.
In other discussions, however, one OF lllOl't' _)[' the

orbital elements could be selected based (!11 ctJll-

siderations other than those of the lllechullJcs o*'

tile mission. When these de_rees of freedom

exist, the following I'aetors arc atHoll_ lhusc
which become of interest:

C;}m})tc_'

(l) the radiation environment II

(2) the meteoroid environment II

(3) atmospheric I'actors, heating, etc. II, V

(4) orbital perturbations IV, V

(5) satellite lifetimes V

(6) maneuver requirenmnts VI

(7) recovery considerations VIII

(8) trajectory error sensitivities XII

(9) guidance and navigation
philosophies XlI

(10) solar elevation and eclipses XIII

ill) tracking station, area, and point

coverage optimization XIII

(12) ground tracks and or synchronous
behavior XIII

(13) optical resolution, etc. XIII

(14) staging considerations, reign[t/on
and eeoHolllic s

(15) radiation heat loads and cryogenic

storage

Because of the number of constraints which

can be inlposed, no single set of rules can bc
constructed which will yield the best orbit in
the sense that each constraint is satisfied.

Indeed, it is necessary to assign weights to eaei_
factor and to select the elements of the inter-

mediate trajectory for each particular mission

by a study of the tradeoffs involved. This phase
of study will not be attempted here because of

the scope of the task and the fact that the 15
1.5_

previous constraints can be permul;Ht,d inu)

different combinations (taken n at a time) nnd
15_

_STH-Ty " different permutations.

All of these factors except the last two are
discussed within the manual. The next to last

item is a practical limitation imposed by the
nature of the vehicle used to boost the satellite
to orbit and as such was not covered within the

present scope of study. Later paragraphs will,

however, provide a short qualitative treatment.

"['he final item on the list, though fat" from com-

pleting the possible list of constraints (e. g.,
human tolerances to radiation), falls into the

same general classification of material. However,

because of tile fact that propellant is required for
maneuvers and because radiation heat loads cause

problems of storability and boiloff, some of the

problems are presented. The level of these

discussions, however, will be superficial since

Ihe theory of heat transfer is a stud), in itself

and since in any: _'ase tilt:, specific vehicle must

be _'onsidered to obtain dcsiMn data. The presen-

talion of this mattq'inl, though brief, will begin
to tie the purely me<hanical analyses of the re-

nlaindel" o] tilt! Hlanua[ io system oF operational

requirt,l]lt,nl s.

H. I_AYI_(),%I) AND (;IX)METIIICAI,

t', ! :ST I', ICT ION,q

The par'kin_ orbit com:_u)t was fntt'oduced in

several chapters (e. _. , VII and LX) to assure that

some given parameler (usually time) couht be

factored into the .",-dimensional analysis withou1

rcquirin_ draslit, maneuvcl's at launch. Thus,

lhe primar N advanlac, e was in tile area of timin_

tilt! l/lission, tlowcvt'F, lhere are three other

distinct advantages:

(1) lqexibiIily

(2) I.:nergy t'cductions

(3) Errok' (:orrc_,tion

I.'lexibilily in i)lannin_ and executing the mis-
sion is af'fordcd becaUSe, the intermediate orbit,

if selected pFope_'ly, increases the number of times
at whit:h transfe," to a _2iwm position or orbit is

possible. Also, since the orbit is to be utilized in

any [}vent, t|ll! launch <an occur at any of the

crossings of the orbital plan,_ by the launch site.

Thus, the c!Y,.cl._ of c:ountdown holds can be re-
duced.

The ene_'g> requirt*mt'nt utilizing this teeh-

niquP is _ene,'ally reduced be<ause of two factors.

Fit'st, the _)ut-o&plane maneuw',' can be eliminated

(or nearly so it" there are small launch lime er-

rors) and secondly, the type of transler trajecto-

ries ean be energy oplinliz_ d since the timing

problem is handled sepaYately. It is noled, how-

ever, that there may be times in which parkin/A

orbits will require an incr_.ase in enerl_y. These

eases are those For which tile problem timin_ was
eorreet for dir'et:t laum:h and ascent via a near

ot)timum tra.ieetor.y since under such conditions

the work expended in transporting propellant to

an intermediate orbit for future burning is not

recoverable. (E this situation is in fact true, it

can, however, be assessed so that in no case

should an unnecessarily high energy requirement

exist.) This energy It)as points up the case for a

low altitude parking orbit. The practical limit
for this orbit will be mentioned hater.

The third advantage is that of affording a con-

venient interval for either correcting for launch

errors or computing changes in the transfer

trajectory to compensate for" them. Because of

this feature, the intermediate orbit approach will

result in smaller errors in the position and

velocity in space at the time of arrival at the

designated transfer point.

The discussion,_ which follow combine tht'

flexibility and energy considerations in a brief

summary of some o! the material presented else-

where in the manual (the emphasis here being in
the selection of the intermediate orbit). Consider

the following sketch and angular definitions:
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/ _ mI

0=0 -_+<m IS

where

O s = perigee-outward radial angle

¢ = launch-outward radial angle

¢I = total burning arc (launch-to-injection)

= unit vector directed toward perigee

= unit vector in outward radial direction

(specified by launch date and flight time).

Since O s and ¢I are relatively invariant (with zero

coast capability), it is necessary to vary ¢ by launch

azimuth or outward radial declination. (Launch

azimuth is restricted by range safety; to change

the outward radial declination the mission must

be altered). By employing a variable coasting.

arc ¢I may be replaced by ¢I + #c + cP2 where _i

is the burning arc necessary to get into the parking

orbit and #2 is the burning arc from parking orbit

to final injection. Given a launch azimuth (or time)

and mission (outward radial declination), the

powered flight is matched to the post-injection tra-

jectory by varying launch time (or azimuth) and

parking orbit coast time. This is illustrated in the

following sketch.

Coasting clCinal burning
Initial _ _ ;

burning_f _a_ Injection

0 = 0 - _ + ¢I + CPc + 92)S

The lowest possible altitude should be selected

for the parking orbit from energy considerations.

Since the energy requirement is lower, this

selection also provides the greatest payload capa-

bility. The minimum altitude which can be utilized,

however, depends on vehicle engineering con-

straints such as aerodynamic heating and struc-

tural loading, on guidance constraints, such as

minimum elevation angle, and on mission con-

straints requiring specified orbital characteristics
(nl] enumerated in the introduction). However, if

the payload capability ouiweigh_ It/(, _thcv fa('_m's,
a parking orbit altitude in the vicinity of 100 to 110

naut mi (i.e., 185 to 204 kin) appears to be the
best choice.

Thus everythina is defined in terms of the

parameters of the problem save the vector _'{.
This unit vector is obtained utilizing the spherical

trigonometric relationships in Ctmptcr III for t'ight
ascension and declination or latitude and the identity

• = cos A cos L x + sin A cos Ly + sin L z

_ = unil vector directed from earth'.q

center to injection

:\I

['I

A
X, y,

= right ascension of injection

= injection latitude

= unit vectors, earth centel'ed

inertial cartesian system

{aligned as x, y, z) with x

toward vernal equinox

This location will of course vary considerably

with launch time delays since the interval in the

intermediate orbit must be adjusted accordingly.

Corresponding to this value of A and 1_, there

is a unique value of longitude for injection. This

value may be obtained from the following equation.

A I = A I - A L - Slet I + A L

where

A L = launcher right ascension

AL = launcher longitude

tI = t l + t2 + qbc/_c

$c = constant parking orbital rate,

This brief review points up some of the factors

affecting the selection of a parking orbit anti in-
dicates the desirability of restricting the altitude

of such an orbit. The discussion has, howeveF,

been purely qualitative since more complete
discussions are available in Chapters VI and VIII

as well as in the literature.
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C. VEttICLETEMPERATUI/I_
CONT|%OL(I{EF. 1)

The general temperature eontL'ol problem can

be conveniently subdivided into two requirements.

(1) Maintaining the mean temperature of

the spacecraft components within limits

dictated by tolerances of the components.

(2) Preventing fluctuations about the mean

temperature which might impair the

general reliability.

Depending on the mission requirements, thece are

several possible solutions for these problel_ls:

(1) Independent local control of sensitive

component s.

(2) General control of the mean temperature

of the total spacecraft.

(3) General controI of the mean temperature

of the total spacecraft plus control of
the fluctuations about the mean tem-

perature.

(4) Various combinations of the above.

The major factors involved in the temperature

control problem will be examined leading to a

discussion of various control methods.

1. Heat Balance

The mean temperature of an object in space is

determined by the energy balance on that object.

Except for the dweI1 time in a planetary atmosphere,

a spacecraft is generally in a vacuum far below
that which will support conductive or convective

transfer, and since mass transfer is generally

negligibIe, the only significant exchange is by radi-
ation. Consider for simplicity a satellite made of
a material of infinite thermal conductivity so that

it is at a uniform temperature throughout. If it is

not in the vicinity of a planet and has no internal

power its energy balance, at equilibrium, is found

by equating the absorbed solar energy with the
infrared energy emitted from the spacecraft:

aGA. = _crT 4 A
1 e

T 4 _ _. G Ai (1)
-_A-

e

where T is the absolute temperature, c_ is the

absorptance of the surface coating for the zero
air mass solar spectrum, e is the emittanee of

the surface for the black body infrared spectrum

corresponding to the temperature of the spacecraft,

G is the solar flux at the local radiai distance of

the spacecraft frornthe sun, cr is the Stefan-Boltz-

mann constant, A. is the cross-sectional area
t

intercepting solar energy, and A e is the emitting

surface area. Kirchhoff, s law for opaque mate-

rims states that absorptance equals emittance (for

bodies at the same temperature) at a given wave

length or integrated over the same spectral curve.
But since the two bodies of this problem are not

at the same temperature and since _ is here re-

served for the solar wavelengths and _ for the

infrared wavelengths, a in general does not equal

_. The fourth power of the temperature is seen

hi l'k t (1) to be proportional to the ratio of c_ to c
._,_ lhat the ratio itself becomes a convenient mate-

I'ial property _,f inh,rest (set? Fi_. 1).

I!' internal p_,v:cr w is un[fornlly dissipated

thr_u_ll_,H_ tilt? imaginaKy spacecraft, the energy
balat_<:e then bccol_les

t?GA. + w = ecfF 4 .X
1 e

A,

T 4 c_ 41 1 w

The effect of tim inlet'hal I)owe_' on the mean ten-1-

peFaturc depends on the ease with which that

enct'gy can Fea_:h the surface and be radiated away,
which in the case of ouF infinite condu(_tivity space-

or'aft is a function of the emittance e only. Thus,

the emittancc must bc considered separately as
well as in the ratio of c_/e. It has often been the

case that the second term on the right of Eq (2),

the internal power term, is small relative to the

first term, so that the internal power produces

a minor effect on the spacecraft mean temperature.

It has been assumed that the spacecraft ex-
terior is a continuous surface of a single mate-

rial. This is generally not the case. ttowever,

under the assumption of infinite conductivity the

case of multiple surf'ace materials with no intct'nai

power, is expressed by

T 4 G [_llAil +c_2 At2+''" j=-_ Ael +e2 Ae2 + " (3)

where the numerical subscripts represent the n
surface materials. Kthe idealized isothermal

spacecraft has moved to the vicinity of a planet,

the energy balance including the transient effect
becomes:

[the absorbed solar energy + the absorbed

solar energy reflected from the planet + the

absorbed planet emitted energy + the inter-

nally dissipated power + the stored energy]

equated to the infrared energy emitted by

the spacecraft.

Symbolically,

j GAisj j ERAiR.j j EEAiEj

dT crT 4A (4)
+w +WCp d-t = "-_cj j ej

where G is the solar flux at local distances of

spacecraft from sun, E R is the flux of solar

energ 3, reflected from the planet, E E is the flux

of planet emitted energy at the altitude of the

spacecraft, AiS is the area absorbing direct soiar

energy, AiR is the area absorbing reflected solar

energy, AlE is the area absorbing the planet,s

emitted energy, c_, is the absorptance of the solar

reflected energy, c, is the absorptance for the

planet,s emitted energy, w represents the inter-

nally dissipated power, We the thermal capacity
P

of the shell, t is time, and the summation signs
indicate that the appropriate terms are sumnled

over the j isothermal surface areas.
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Depending on the spacecraft thermal design,

and its particular orbit and altitude, the magnitude

of the energy exchanges shown in gq (4) varies,

in turn causing changes in the mean temperature of

the spacecraft. These factors are discussed quali-

tatively in the following sections. More detailed

analytic discussions are to be found in the bibli-

ography.

a. Solar flux input

The mean value and variations about the mean

are most strongly affected by direct solar radiation.

Solar flux input is dependent on orientation of the

surface, time of exposure, look angles with re-

spect to sun, wavelength of received and emitted

radiation. In addition there is the roblem of

solar eclipses due to the planets (see Chapter XIII}.

One effect of the eclipse of an earth satellite is

the transient cooling during the eclipse. The extent

of this, in a simplified model, depends on the ther-

mal capacity of the satellite and the external radi-

ation resistance as determined by the surface in-

frared emittance. In an actual satellite the various

components each have different thermal capacities

and different thermal couplings to the exterior,

and will therefore experience different transient

thermal behavior during the eclipse. The other

important thermal effect is due to the reduction in

the total solar radiation input integrated around

the orbit. ]_'or example, a satellite in a polar orbit

will at one time during the year experience full sun,

and at another time of the year, if in a low altitude

orbit, the total solar flux averaged around the

orbit will be only slightly greater than one-half of

the nonlinal value. The present best estimate of

the nominal value of the solar flux at the earth,s

mean orbital distance from the sun is 442 Btu/

hr-ft 2 (1199kcal/hr-m 2) with an uncertainty of

±2%. The ellipticity of the earth,s orbit results

in a +3. 7% fluctuation in the solar input through -

out the year, so that other factors remaining con-

stant, a satellite will be about 9° R (5° K) hotter

in December than in June. The limit cases for

the effect of earth orbits in solar radiation input

may be divided as:

Ecliptic. A satellite whose orbit lies in the

ecl_ne at same time will be eclipsed by

the planet once each orbit throughout the time re-

quired for the planet to rotate the orbital plane out

of the ecliptic by an amount dependent on the

orbital elements.

Equatorial. If the orbit lies in the equatorial

plane, and is at a relatively low altitude, the

satellite will be eclipsed each orbit. At a suffi-

ciently great altitude, because of the 23-degree

tilt of the earth,s equatorial plane, the satellite
will experience an eclipse once each orbit during

two periods of the year and will experience no
eclipses for the other two periods. This is the

case for a satellite in a circular, equatorial 24-hour
orbit about the earth.

Polar. The polar orbit is similar to the high

alti_ equatorial case in that the satellite is

eclipsed once each revolution for two periods

during the year and is in full sunlight for the other

two periods. Each of the two eclipsing intervals

start out with an eclipse of momentary duration,

gradually increasing to an eclipse of maximum

duration (the time depending on the satellite

velocity) and gradually decreasing the shorter"

eclipse durations.

Special. One special class of orbits [approxi-
mately g]-s retrograde, depending on the semilatus

rectum] has the property that the nodes regress

such that the 1 °per day shift in the direction to the
sun is canceled. In this orbit the satellite will be

in full sun continuously throughout the year or,

depending on the launch time during the day,

eclipsed once each orbit throughout the year. The

duration of the eclipse depends on the altitude of

the satellite and the ellipticity of the orbit. For

example, in a highly elliptical orbit it is possible

to have very long eclipses, if they occur at the

apogee of the orbit; however, it is possible to

delay the occurrence of such an apogee eciipse

(resuiting from orbital precession) for several

years, depending upon the orbit characteristics,

by suitable choice of launch time.

b. Planetary emitted flux

For the earth and presumably for any planet
with an appreciable atmosphere the infrared

energy emitted by the planet is relatively inde-

pendent of latitude and longitude and varies in a
predictabie manner with altitude. In the case of
the earth at low altitudes the flux is about 68

Btu/hr-ft 2 (184 kcal/hr-m2), In cases where

there is no atmosphere, as for the moon, the

emitted flux nmst be considered to vary with

angular position measured from the subsolar
point because of the large temperature variations
on the surface.

The earth-emitted flux injects two sources of
error which must be aecounted for in the thermal

design of the spacecraft. One is the magnitude

of the flux, which is known with much less pre-
cision than that of the solar flux. (This lack of

knowledge is even more applicable of the moon,

and for the other planets there is relatively poor

knowIedge of the planetary thermal balance condi-
tions and the emitted flux). The second is the lack

of adequate knowledge of the emission spectral
characteristics. In the case of the earth, for

example, it is known that the emitted flux comes

primarily from the surrounding gaseous atmos-

phere which has spectral charaeteristics differing

significantly from the black body spectrum corres-

ponding to the earth,s equilibrium temperature.

Lack of knowledge of this spectral characteristic

results in an uncertainty in the effective absorp-

tance of the spacecraft surface material for the

earth emitted energy.

c. Planetary reflected solar energy

The same altitude dependence applies for the

solar energy reflected from the earth or nearby

planet as for the infrared energy emitted by the

planet. In addition the reflected solar energy

varies with the orbit plane attitude with respect

to the sun and the instantaneous position in the

orbit. For example, in a twilight polar orbit

the reflected solar flux is approximately con-

stant, whereas in a noon orbit in which the sun
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lies in the orbit plane the reflected flux varies
from zero to a maximum of about 160 Btu/hr-ft 2

(434 kcal/hr-m 2) at the sub-polar point.

The magnitude of this flux is approximately as

uncertain as that of the earth emitted flux and is

known to vary with such factors as cloud coverage.

The absorptance of the surface materials for the

planetary reflected solar energy is not precisely

the same as for thc direct solar flux because of

changes in the spectral characteristics after re-

flection from the planet and its atmosphere. The

magnitude of these changes and the corresponding

change in the effective absorptance for this flux is

not well known.

d. Spacecraft characteristics affecting heat

balance

The internal and surface characteristics of the

vehicle itself are important in temperature control

since they define the radiation losses to space and

to internal heat boundaries (equipment heat dis-

sipation and thermal inertias). A thorough review

of thermal balance and uncertainties is given by

Comack and Edwards (Ref. 2) and a qualitative

discussion is presented below.

Thermal radiation properties. Knowledge of

the _mal radiation properties of the spacecraft

surfaces can be deficient in two respects. The

first has to do with uncertainties in measurement

of the properties in the laboratory, and the second

is concerned with the changes in those properties

due to handling and exposure to the air before

launch, to heating during ascent to orbit, and to

exposure to the space environment.

Shape and attitude considerations. A spin

stabilized spacecraft has the spin axls nominally

fixed in inertial space, though various disturbing

torques and tip-off errors can decrease the spin

rate and gradually shift the spin axis attitude in

space. An attitude controlled spacecraft is not

affected as much by these uncertainties. Cornog

(Ref. 3) shows that if the attitude of the vehicle

can be controlled, the same aspect of the vehicle

can be presented to the sun at all times. If low

vehicle temperatures are desired, the portions of

the surface exposed to the sun can be made highly

reflective, the unexposed portions can be covered

with some material having good radiative properties,

and by changing the shape or treating each vehicle

quadrant with the desired a/( materials, the ef-

fective absorptive area exposed to sunlight can be

made quite small.

Internal temperature gradients. The preceding

factors all result in either variations or uncertain-

ties in the spacecraft mean temperature. (Mean

temperature can be defined as that temperature

which the spacecraft would attain assuming zero

thermal resistances. ) In an actual vehicle, tem-

perature variation can be quite large. For example,

temperature differences exceeding i00 ° F (38 ° C)

were encountered in Explorer VI. Thus a given

component in this spacecraft located near one end

of the thermal gradient would experience large

changes in temperature as the sun orientation

changes and during the spacecraft lifetime.

Internal power fluctuations. As various com-

ponents are turned on and off, or changed in
power level, the locally dissipated energy causes

local temperature changes, the amount depending

on the power dissipated and the particular thermal

circuitry of the spacecraft interior. This internal

power dissipation may range from a few watts to
kilowatts depending on the equipments required
for the mission.

2. The Effects of Thermal and Optical Properties

on Temperature Control

a. Thermal radiation properties and materials

Coating the surface of the spacecrafts external

structure with thin lightweight material may pro-
vide the needed thermal radiation properties.

These coatings may in some instances be more

effective if applied in patterns of several mate-
rials (for example the combination of vacuum

deposited aluminum and anodized aluminum in

adjacent areas). Values of solar absorptance

and infrared emittance e covering the entire

range from 0 to 1 are useful for these coatings.
In particular, both high and low values of the

ratio of _/e are especially useful for certain forms

of active temperature control systems. A good
material should absorb over the entire thermal

spectrum, that is, have high a and high e. (Mate-
rims which reflect well over the entire spectrum,

that is, have low values of _ and e, are also useful,

although this combination can sometimes be

achieved by insulation. )

A great body of thermal radiation data exists
in the literature. While these data are useful as

a guide to the kinds of properties obtainable with

various types of materials, most of it is useless

for space applications. There are a variety of
reasons for this fact:

(1) The data is not applicable because of the

following reasons: much of it is reported for

radiation properties not directiy applicable to

the spacecraft thermal control problem; in
general, the diffuse properties are required, but

most data reported is for specular properties;

for emittance, hemispherical values are generaily

required, but most data reported is for normal
or near-normal angles; absorptance data is not

available as a function of incident angle but most

data reported is for a single near-normal angle;

much emittance data reported is for a totaI

measurement, which is often made at a rela-

tively high temperature (such data is applicable
to a somewhat incorrect spectral curve and to

the wrong material temperature); finally the
total solar absorptances are often measured

directly with the solar energy as it exists at the

laboratory (this spectrum is generally markedly
different from the solar spectrum in space).

(2) Measurement errors. Only in the past

few years have the subtleties of the various types
of radiation measurements and techniques been

fully appreciated (Refs. 4 and 5). Equipment

and techniques to measure directly the appropriate

properties are in many cases still lacking. From

the standpoint of the designer using the data, such

errors represent serious shortcomings and must
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befully recognized.A fewofthecommonsources
oferrors are: lensesandmirrors whichdonot
havespectrallyflat opticalcharacteristicsareoften
presentin theinstrumentopticalpath;watervapor
maybepresentindetrimentalamounts;thereflect-
ingsurfacein integratingspheres,oftenMgO,is
sensitiveto watervaporandmayhavetobere-
newedfrequently;IVlgOis partiallytransparentin
thewavelengthsfor whichit is usedandmustbe
appliedina relativelyheavycoatto avoiderroneous
data,afactnotalwaysappreciatedbytheexperi-
menter;nonuniformwall temperatureswithvari-
ancesin the infraredreflectanceyielderroneous
data;spectralmeasurementsaredifficultto obtain
atwavelengthslongerthanabout50#, andmuch
oftheavailableequipmentis limitedto about25/_.
Thislastpointis significantin its effectonthe
propertyobtainedfor a lowtemperaturespectrum
(for example,18%of theenergyof a 50° F (10°C)
black-bodyspectrumand36%of a -100° V -73 ° C

spectrum are both beyond 25 _).

(3) Materials not well defined. Much of the

reported data represents materials which are

poorly defined. For example, the surface optical

properties are usually sensitive to the details of

a materials processing technique. Because of

incomplete or inadequate description of the mate-

rial, the materials cannot generally be duplicated,

rendering useless a large part of the reported
data. In most cases the only solution to this

situation is to measure the required properties
for each material.

Once the spacecraft has been prepared with

materials of the desired properties, there remains

a practical problem of making certain that the

properties remain unchanged before the space-

craft reaches altitudes above the atmosphere. A

certain amount of handling of the exterior surfaces

may be unavoidable. Some of the more delicate

coatings can be protected by plastic peel-coats

until a few days before the scheduled launch, hut if

any last minute cleaning is necessary to remove

fingerprints, grease, dirt, etc., there is always

a danger that the cleaning process itself may affect

delicate surface properties. During the launch

interval the satellite and its materials are pre-

sumably protected from aerodynamic heating by a

protective fairing, which is jettisoned after leaving

the sensible atmosphere. Because of the weight

penalty in carrying the fairing along longer than

necessary, there is often a tendency to jettison it

too soon, thereby heating the satellite surfaces to

a level which may affect the optical properties of

the surfaces.

b. Optical properties in the space environment

Most of the factors of the space environment

represent new and untried conditions for space-
craft materials. Whether these materials and in

particular their sensitive surface optical properties

remain stable in this environment is a question of

importance for all spacecraft with long intended

lifetimes. Among the factors of importance are:

(1) The vacuum of space, in which the

pressure is such that sublimation and

decomposition occur virtually unimpeded.

(2) Ultraviolet radiation, X-rays, and the
harder radiation of the radiation belts.

(3) Single particle radiation.

(4) Micrometeorites.

Certain of these factors may present no prob-

lems. For example, micrometeorites are gener-

ally believed to be of sufficiently low flux that

they will have no significant effect in spacecraft

thermal control (Ref. 6). Many of the other

factors of the space environment are difficult

or impossible to reproduce in the laboratory,

even singly, let alone in combination In addition,

the designer does not always have the freedom to

choose materials which are rugged since certain

optical properties are available only in delicate,

vacuum deposited forms. Since these surfaces

can be delicate, _ufficient flexibility must be t
allowed to provide for some change in materials

optical properties due to exposure in the space
environment. (Some of the important optical

properties of various materials are summarized
in Table 1.)

3. Vehicle Temperature Control Systems

a. Passive

A passive thermal control system is defined

here to be one employing fixed external coatings
in which there is no active element either mechan-

ical or electrical. Since the mission requirements

in orbit, the lifetime, the internal component

complexity, etc. , have generally been sufficiently

simple from the thermal environment standpoint

to allow a passive system to be used success-

fully, the great majority of spacecraft flown to

date have had passive thermal control systems.

Experience demonstrates that a passive design can
achieve a spacecraft mean temperature in orbit

within about 5 to I0 ° F (2.8 to 5.6 ° C) of the de-

signed mean temperature (for example, in the case

of Explorer V!).

An interesting application of a passive design
was that of Pioneer V, a spacecraft designed to

reach the vicinity of the Venus orbit. In the

course of its journey, it would experience approxi-

mately a doubling of the solar flux from that

occurring at the earth,s distance from the sun.

This spacecraft was spin stabilized, that is, with

its spin axis fixed in inertial space. In an approxi-

mate manner, the trajectory flown may be con-
sidered to be such that the sun moved half-way

around the spin axis during the half orbit to Venus.
That is, the sun look-angle would increase from

zero, looking straight down the spin axis at one

end of the spacecraft, to 180 °, looking at the

opposite end of the spin axis and spacecraft. If

the external coating was chosen to be appropriate
for the solar flux at the earth, s distance from

the sun at the start of the flight (sun look-angle

equal to zero) and also chosen appropriately on

the other half of the spacecraft for the Venus

distance from the sun, then in a rough sense the

coating would be appropriate at both the earth

and at Venus. In actual fact, partly because of

three-dimensional effects and partly because of

other considerations, the orbit that was flown

resulted in a sun look-angle of 35 ° at the start,
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TABLE 1

Optical Pro)erties of Various Materials (Ref. 3)

Degrees Degrees Absorption Ratio

Material Fahrenheit Centigrade Number a Emissivity E a[(

Silver

Aluminum, polished

Aluminum, 2024, buffed and

polished

Stainless steel, black

Stainless steel, polished

Fused quartz, bricks, hard
rubber, asbestos

Lamp black

SiO on polished metal

MgO

Titanium, 6A I-4V

100

100

I000

100

100

1000

100

100

1000

100

1000

100

100

100

37.7

37.7
538

37.7

37.7
538

37.7

37.7
538

37.7
538

37.7

37.7

37.7

O. 04

0.10

0.34 to 0.37

0.40

0.1to 0.4

0.95

0.02

0.05

0. 06

0.1

0.15

0.8

0.03

0.90

0.90

0.05

0.90

0.90

0.95

0.95

0.90

0.97

0,18

2.0

2.0

12.0

8.0

0.2

1.0

0.1

0.15

4.4

decreasing to about 15 ° at 20 days, back to 35 ° in

about 40 days, and increasing to 135 ° upon reach-

ing the Venus orbit at approximately 105 days after

launch. A pattern was chosen using two materials,
one with an a of 0.92 and ¢ of 0.87 and the other

with an a of 0.25 and an ( of 0.85. A pattern was

achieved which maintained a mean temperature

within the desired range over the entire trajectory,

as well as at the end points of Earth and Venus.

During the 3-1/2 months of transmitted data, the

measured temperatures followed the predicted

curve within about 5 ° to I0 ° F. The flight path that

was finally selected was not the optimum one from

trajectory considerations but rather was chosen

to satisfy a thermal control requirement that the

sun look-angle increase from approximately 0 to

approximately 180 °. It would be entirely possible,

from trajectory considerations alone, for the sun

look-angle to start at 90 ° at the earth, decrease
to zero and increase back to 90 ° at the Venus

orbit. Clearly the coating pattern and therefore
the effective a/( of the spinning spacecraft at both
the earth and Venus would be the same and would

therefore not compensate for the increase in solar

flux. The actual sun look-angle history noted above
was about the limit of allowable deviation from the

ideal 0 to 180 ° change.

b. Active

A variety of mechanizations of active control

may be envisioned:

(1) The spacecraft can be kept relatively cool

by means of passive coatings, but still

warm enough to satisfy the majority of the

components. (Local thermostatically con-

trolled electrical dissipation can be pro-

vided to warm those few components

(2)

(3)

(4)

requiring a higher temperature.) While

this scheme is quite feasible, the types of

components which require the heating,

(such as liquid fuel tanks and secondary

storage batteries) may be so large thut

the "local" heating may involve a large frac-

tion of the spacecraft power. Unless ex-
cess power is available such a design muy

not be practical from the i)oint of view of

the overall system.

With a nonspherical shape, such as a

relatively flat disc, the mean tempera-
ture can he increased or decreased by

orienting the spacecraft so as to increase

or decrease the surface area intercepting

solar energy (see Figs. 2, 3 and 4).

However, normally, this design would

not be practical in view of other conflict-

ing requirements for the spacecraft atti-

tude control system.

A number of materials change optical

properties as a function of temperature.

For example, silicon monoxide and other
materials like it have the self-controlling

tendency to increase in emittance as tem-

perature increases, thus tending to limit
the temperature rise, and vice versa.

Various experimenters are currently

examining such materials, but the ma-
terials unfortunately have a general

characteristic that their emissivity is

too weak a function of temperature to be

advantageously employed.

Some number of materials undergo re-

versible optical property changes as a

result of phase changes, Curie point
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transitions,etc. leerexample,theso-
called thermochromie malerials u(versitdy

change color, and thel'efot'e sol{it' a})sorp-

lance, as a sharp function of [uil]pel'aitlFe,

Unfortunately these materials ma> bc in the

form of gels, liquids, etc. , generally with

low vapor pressures an(l t}lcrel'ol'e Ul_suit-

able for the exterior surface. The> could

be encapsulated in materiaks l:uansparent

in solar wave lengths but at the present at

least they would not seem 1o offer enough

advantages to overcome their obvious short-

comings for use in a temperature control

system.

(5) Mechanical changes of radiation properties

and areas are the systems presently _iven
most consider.alien.

These mechanizations are embodied [n two

general types of active vehicle temi)erature con-
trol designs, ti_e radiation halance desiRn and the

insulated design. Any thermal desit_n is at least
partially a combination of the two and there are

many designs in wtHch both tile external radiation
balance and the insulated features arc combined

in a single application.

Radiation balance type. In a radiation balance
design tt_e internally dissipated power is _enerally
a small factor in the overall heat balance and

therefore contributes only in a mine[" way to the

rneau temperature level, although _he dissipated
power may have important local effects. The

energy relationship is then a balance, in tile
equilibrium state, he{wren the absorbed incident

radiant encrg), and the emitted radiant energ 3 .

Active control of the temperature may be e fleeted

by' varyinta tile exposed areas of two materials,

one with a relatively t/<ah o/_ ratio and one with

a relatively low re/( ratio. This eat be accom-

plished by a venetian blind arrau)e meat, movin_

vanes, or [[_ a variety of other wa3s.

The rirst sl)acecrafts with such n temperature

control system were the Atlas/Able 4 and Able 5

satellites. These were intencted to be orbiting

satellites of tile moon, to be put into lunar orbit

by means of monopropellant hydrazine engine

aboard tile spacecraft to reduce the approactl
velocity sufficiently to allow tatar capture, t'artty

because of the hydrazine fuel and fairly severe
environmental conditions, such as lunar eclipse

durations exceeding two hours, it was necessary
to employ an active thermal control system. The

spacecraft was spin stabilized, thus an arbitrary

sun orientation with respect to the spin axis was

possible during the spacecraft lifetime.

Briefly,, the thermal design was as follows.

Thermal energy exchange took place primarily at
50 circular areas well distributed over the external

skin. Each circle consisted of an alternating ar-

rangement of two materials in the eight 45 ° sectors
of the circle, one material with a higtl a/e ratio

anti the other a low c_/( ratio. The circular areas

were covered by a four bladed mask whieh could

completely cover one or the otter of the two

materials, or some fraction of each at any inter-

mediate position. The mask was driven b>' a bi-

metallic sprint{ device at ti_e inner end of lhe hod>,,

arranged so that tile bimetallic device sensed a

portion of lhe spacecraft interior. The plastic

body of the unit was made of a poor thermal con-

darter so that the bimetallic spring was better

coupled thermally to the spacecraft interior than

il was to the skin t)f _he spacecraft. The mask

was rotat(d lilt> 45" of its tcavel by a 25" I;" change

in lelnperature of the spring. With the spring at

50 °I'' the mask full3: exposed the high (_/e material,

and at 75 ° Ic lhe low o/e lnaterial was fully ex-

posed, q'he activalion thus provided self-powered,

close(i-loop control of tile interior temperature.
The remainder of the Slmcecraft's skin, outside

the control circles, was covered with a inatorial
of low o and low ¢ so that the contributioiq to ti_e

overall energy balance from 1he unconli'olled area

wouht be as small as l)ossible. Thai area was

va CUUl}l -dopes ited all_llrlil]tlll], eve I' a smooth

plastic suhstrate, with an absorptance of O. 10

and an emittance of O. 05. The high a/( material
in the control areas was a form of titanium dioxide

with an _ of 0. G5 and an ( of 0. 13, and tile low

{He material was a particular form of anodized
alcnninum with an ce of 0.20 and an e of 0.80. A

more complete description of ttais system is given
in l{ef. 7.

q'he system has the capahility of compensatin_
for fairly large changes iu the external environ-

men{, such as an interplanetary mission to \:onus,
and furthermore it minimizes lhe decrease in

temlJcrature during long eclipses because the

masks automatically decrease the effective

emittanee of tire spacecraft during this time.

Insulated t),pe. It a spacecraft is always
oriented so that the sun irradiates only certain

of its sides but not others, as may t)e ti_e case

in a fully attitude controlled or a spin stabilized
spacecraft, it is possihle 1o insulate the solar

irradiated sides so that the solar input plays little
or no parl in tile spacecraft cnergy balance. (A

very high order of insulation may be achieved

for' the spacecraft sides with nmltiple layer re-
flective insulation.) If for simplicity the space-
craft is considered to be fat" removed from a

planel, then the energy, balance is achieved be-

tween the internally dissipated t:)ower, the trans-
mitted solar imat load and the spacecraft emitted

energy. The unirradiated, uninsulated faces are

covered with a surface of high emittance, anti the

emitted radiation is controlled 1).3' a set of louvers

(external coverings to the radiation plate). The

emitting area is then a function of tire louver post-

don, which may be controlled by sensors measuring

the radiation plate temperature to which the space-
craft eoml)onents are mounted. If the louver is

irradiated, the system may still be employed if
the radiation plate is covered with a material of

sufficiently low (y and high _ , to minimize the
solar input. It is l.equired that the internally

dissipated power be at least as great as the heat

tosses frown the entire spacecraft when the louvers

are fully closed.

The advantages of this design are that the

spacecraft is insensitive to eclipses and other

changes in the solar flux, such as wouht occur

on an interplanetary journey. The temperatures

within the spacecraft are much more uniforni lhan

in the radiation balance design since there is no

large external input over any part of tile surface,

and tile problem of sensitivity of optical properties
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of thespaceenvironmentis greatlydiminished.
Theprimarypropertyof interestis thehighemit-
tanceon the radiating plate, but this is a property
which tends to be stable in space environment

(Ref. 8).

D. CRYOGENIC PROPELLANT STORAGE

(Ref. 9)

Cryogenics is concerned with the phenomena of

low temperatures, normally those below T_- 250 ° F

(-157 ° C). To be more specific, cryogenic stor-

ability involves the prevention of excessive boiloff of

cryogenic fluids (e. g. , liquid oxygen, liquid fluorine,

liquid nitrogen, liquid hydrogen, and liquid helium)

over varying periods of time. These stored fluids

can be used for any of the following purposes:

(i) Supplying other vehicles or stations

(logistic use).

(2) Maintaining state-of-readiness in ballistic
missiles or for satellite propulsion (opera-

tional use).

(3) Thermal shielding during times of in-
creased flux.

i. Properties of Cr_rogenic Fluids

Insofar as space vehicles are concerned, there

are six important cryogenic fluids: liquid hydrogen,

liquid helium, liquid nitrogen, liquid fluorine,

liquid oxygen, and liquid ozone. Table 2 gives the

basic properties, except vapor pressure, of these

fluids and of liquid neon and liquid argon. Figure

5 presents the vapor pressure of these fluids as a

function of temperature and pressure. Definition

of properties is as follows:

(I) Heat of vaporization iv). The number of

heat units required to vaporize one unit

weight of liquid at its normal boiling

point.

(2) Boiling point. Absolute temperature, at

which liquid boils under one atmosphere

of pressure.

(3) Freezing point. Absolute temperature,

at which the liquid freezes, under one

atmosphere of pressure (except liquid
helium).

(4) Critical point. The combination of pres-
sure and temperature of a liquid and its

vapor under equilibrium conditions that
causes the two phases to be indistinguish-

able.

(5) Density (O). Density of the gas phase in

units of force per unit volume.

(6) Specific heat ratio (7). Ratio of specific

heat at constant pressure (ep) to specific

heat at constant volume (Cv).

(7) Vapor pressure (p). The vapor pressure

of a liquid is defined as the pressure of

saturated vapor over the liquid. It varies

with temperature. In the design of cryo-

genic tankage, the relationship of vapor
pressure to other pressures (see below)

is of importance in calculating boil-off
and "no-loss" times. Figure 5 gives the

variation of vapor pressure with tern-

peratures for liquid nitrogen, liquid

oxygen, liquid hydrogen, and liquid
helium.

2. Properties of Insulations

In the past few years a number of new insula-

tions of extreme value in cryogenic service have

been developed. With these much more efficient

insulations, the mission analyst is able to plan

space flights involving much greater weight of

payload and vehicle.

There are six types of insulation now in use

for various types of cryogenic service. Some are

useless with regard to space vehicles, because of

too high a conductivity or density. Others (Fiber-

glas, SI-4, NRC-2) have great potential in space

applications, since the environmental vacuum

(either moderate or high) prevents heat leaks into

the fluids due to gas conduction and convection.
The substance added, whether powder, Fiberglas,

aluminum foil, etc. , is intended to reduce the
radiation heat leak across the vacuum into the fluid.

a. Types of insulation

(i) Cellular. Actually consists of a silica

gel with very high absorbing or absolv-

ing surface.

(2) Powder. An organic powder, usually

pertite, is introduced into a space held

at a moderate vacuum (< 100_Hg).

(3) Opacified powder. Aluminum or bright

copper flakes are added to the powder to
increase the radiation shielding. The

vacuum must be high (< 10W Hg).

(4) Fiberglas. A very low density inorganic
substance placed in a high vacuum (< lu

Hg).

(5) Organic foams. Usually polystyrene,
foamed either with air or freon. These

foams have a cell structure which isolates

one cell from another. When placed next

to a fluid at cryogenic temperatures, the

gas condenses within each cell, creatinga

partial vacuum, which is the insulating

agent. Use of such foams with liquid

oxygen or liquid fluorine is highly dan-
gerous, due to their organic nature.

(6) Multiple radiation shield. This type has

the highest insulating qualities (but also

requires high order vacuum for most

efficient usage (< lu Hg). One type (Linde

SI series) eonsits of alternate layers of

aluminum foil and glass fiber paper.

Usually 50 to 80 layers are used. NRC-2

uses approximately 100 layers of crinkled

myiar which has been aluminized on both
sides.
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b. Tableof properties

Table3lists all typesof insulations,with
someof themreportedunderdifferentconditions.
Thepropertiesof SantogelA,givenfor anam-
bientoperatingpressureandundermoderate
vacuum,showtheeffectof vacuumonthesein-
sulations. Thethermalconductivity(k)of Linde
SI-4andtheFiberglasinsulations,is measured
bothin thecompressedanduncompressedstates.
Theincreasein k valueundercompressionin-
dicatesthatsuchinsulationsmustbemaintainedin
anuncompressedstatefor greatestefficiency,but
will alsohavea reasonableinsulatingeffectwhen
compressed.Thisfactmaybeof considerable
importancefor theinsulationof spacevehicle
stagesduringflight throughtheatmosphere.
Outerinsulationblanketsmustbecompressedto
preventtheir beinglostduetoair friction. Once
in orbit, or inspaceflight, thecompressingde-
vicemaybe removed,andthehighvacuumof
spacewill raisetheinsulationto its full efficiency.

c. Relationshipof thermalconductivityto
operatingpressure

Toobtaintheverylowthermalconductivity
valuesshownin Table3, theinsulationsmustbe
in vacuum.Hence,a doublewall is requiredfor
mosttankageapplications--exceptin space,
wheretheenvironmentis alreadyavacuum.The
thermalconductivityis a functionofthedegree
of vacuumin theinterspace.Figure6 indicates
that, in general,thepowderandcellulartypesof
insulationare lessaffectedbyvacuumchanges
thantheradiationshieldandfiberglasstypes.
Withthelatter, thereis a sharploweringinef-
ficiencywhentheoperatingpressurerisesabove
about10Uof mercury;whilewiththeformer, the
changein k is moregradual,andpressureso[
i00 to 1000_Hgcanbetoleratedwithnottoogreat
a degradationofinsulatingqualities. It mayalsobe
seenfromFig. 6thatthemultipleradiation
shieldinsulations(athighvacuum)aremoreef-
ficientthanothertypesbyanorderof magnitude.

Oneothercriterionfor efficientinsulationis
givenin thelastcolumnof Table3wherethether-
malconductivity(k)is multipliedbythedensity
of theinsulation(p). It maybeseenthattheprod-
uctk for themultipleradiationshieldsis oneto

P

three orders of magnitude lower than other types.

Hence, for orbital operations, it is concluded that

the multiple radiation shield insulations must be

used. In the remainder of this section, the insu-
lation used in all calculations will be the Linde

SI-4.

d. Relationship of thermal conductivity to wall

temperatures

The temperatures of the inner (cold) wall and
the outer (warm) wall of the insulation have de-

cided effect on the value of the thermal conductivity

factor (Fig. 7 ). The thermal conductivity varies

by about a factor of 30 as the outer wall tempera-
varies by a factor of i0 [100 °to I000 ° Rlure (T 1 )

(56 to 560 ° K)J for any constant inner wall tempera-

ture (T2}. The value of k varies much less with in-

ner wall temperature for constant T I, and is es-

sentially independent of the value of T I.

3. Design of CrTogenie Tanks

In order to design cryogenic tankage for space

applications, one must determine the heat input

into the cryogenic fluid. In order to do this, the

temperature of the outer wall must be determined.

If the insulation has been selected and the cryo-

genic fluid specified, all else is known. The ulti-

mate factor to be calculated is the evaporation, or
boil-off rate, of the cryogenic fluid.

Space vehicles, or orbiting tankage, receive

heat from the sun according to the distance from

the sun. Figure 8 shows the relationship of heat

flux from the sun (G s) and the distance from the

sun. If tbe surface of the tankage were either a

perfect.absorber or a perfect reflector, the prob-

lem would be simple. However, since this is not

the case, the absorptivity (a) and the emissivity
(() of the surface must be taken into account. Nor-

mally, the parameter used is the ratio of these

terms, a/( . The higher this ratio, the more heat

absorbed, and the higher the temperature T I.

Figure 9 shows the variation of T 1 with a A /c A8 w

(where A = surface area exposed to the sun and
s

A = area of the total outer surface of the tank).
w

The greater the proportion of the outer surface

exposed to the sun, the greater the heat absorbed.

It is possible to determine the outer wall tem-

perature (T I) from Fig. 9, once the shape and

size of the tankage are known. One first assumes

a value of a/( , the practical lower limit of which

is approximately 0.25. From the general shape

and orientation of the space vehicle or tank, As/

A w may be estimated. After obtaining aAs/C A w,

it is possible to interpolate in Fig. 9 at the ex-

pected distance from the sun, reading the tem-
perature. Note that orbits about the earth may
be assumed at the same distance as the earth

from the sun, with negligible error. Even on

the moon at its nearest point to the sun, the

temperature of the outer wall will maximize at

essentially the same value as if the vehicle were
on earth.

Knowing the temperature of the outer wall, it

is then possible to determine the heat flux (Ql)

into the cryogenic fluid.

Qf = _ (T 1 - T 2)

where k/_ is the ratio of the thermal conductivity

to the thickness of the insulation, and Qf is the

heat flux to the exposed surface. Figure i0 shows

the results of calculations for several values of

T 1 (thus, for several values of _/c ), and for var-

ious thicknesses and thermal conductivities.

a. Total heat input

The total heat input per hour into the cryo-

genic liquid will be Q_ T = (_ Aw (As/Aw) where

As/A w = estimated percentage of surfaee ex-

posed to the sun. From a knowledge of Qt T'

the weight of the cryogenic liquid at the start,
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and the heat of vaporization of the cryogenic liquid,
some knowledge of the evaporation rate can be

gained.

b. Relationship of tank pressure, vapor pres-
sure and designed vent pressure

The phenomena occurring in a tank of cryo-
genic liquid are complex. If the vapor pressure =

tank pressure = vent pressure, then the evapora-

tion rate is easily determined. There appear,

however, to be three thermodynamic phenomena

that occur in distinct phases. When the heat in-

flow begins, normally the vapor pressure will be
below the tank pressure. As heat continues to

flow in, the temperature of the liquid increases
according to

Q_T t

AT - W
c

P

where

t = time in hours

W = weight of cryogenic fluid, and

ep = specific heat of liquid at constant
pressure.

Thus, the pressure is raised, as shown in Fig.
5. During Phase 1, no evaporation can occur be-

cause all of the heat used in raising the tempera-

ture of the liquid, merely increases its vapor

pressure.

Phase 1 ends when the vapor pressure equals
the tank pressure. In Phase 2, these two pres-

sures will always be equal, since, if the vapor

pressure were greater, evaporation from the

liquid into the ullage space would increase the

tank pressure. Thus, in Phase 2, the liquid

temperature, the vapor pressure and tank pres-

sure all increase, until finally the vent pressure

is reached. Although the liquid has evaporated,
it has not yet been lost from the tank. It is, how-

ever, unusable as a propellant, although it could

be used to aid in a pressure transfer of the fluid,

if required.

Based on perfect gas laws, the total heat input

during Phase 2 can be conveniently divided in the

following way

r., p2T1 JtQ_T = AT W c + M 1 v / D,--Z-'T-2--_ - 1
P [

where

M 1 = mass of gas initially in ullage space

Pl' P2 = initial and final Phase 2 tank pressures

v = heat of vaporization of cryogenic

liquid, and

AT = total temperature change of liquid.

The first term in this equation is the heat input

which raises the temperature of the liquid, and

the second term is the heat input which vaporizes

the liquid. The duration of Phase 2 is given by

= 1 + M1
t _ ATWCp v

if aerodynamic heating is neglected. A term

Qaero/Q_T must be subtracted from the time to

account for this phenomenon.

If the ullage space is small, t can be consid-

ered the preboil-off time, because in this case

the boil-off time is much less than the liquid heat-

ing time. If the ullage is less than i0 to 15% of
the total volume,

AT Wc

t ~ _ hours,
_T

this is the time during which no boil-off occurs.

Phase 3 is that period during which tank pres-

sure is equivalent to vent pressure. It is during
this time that the liquid actually boils off.

t Q_T

WBO - v

This equation shows that the boil-off for reasonably

well designed systems is moderate even for long

times for good quality insulation in moderate thick-
nesses.

If the tank is filled at the vent pressure then

the process will be in Phase 1 until the vapor pres-

sure reaches the vent pressure, at which time the

process becomes Phase 3. Thus, preboil-offtime

and the actual boil-off can be regulated by varying

the design vent pressure. Phase 2 is completely

eliminated from consideration. Sucha system will

have the disadvantages of requiring external pres-

sure sources (helium bottles) and a pressure re-

lief system. Thus, by setting a high vent pressure

and maintaining a small ullage space, the pre-
boil-off (no loss) time can be extended considerably

(see Fig. 11).

c. Insulation performance factor

The weight of the insulation, I w, represents

a performance penalty and since insulation is not

perfect, a certain amount of boil-off will be as-

sociated with the weight of insulation determined

by the t Q_T/V. The penalty exists when

I w +tQ_T/V > (uninsulated tank boil-off ).

Let

tQ_ T
S = I +

w u

be called the insulation performance factor.
it is desired to minimize S. Since

Thus,

I
w=

pA

and

kpA 2 (T 1 - T 2)

Q_T = I
w
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then

+ t [ kpA2(TI - T2 ) ]
S = I w iw

and S is a minimum when

2
I

W

KpA 2 (T 2 - T I) t

Thus, the total weight is minimized when the in-

sulation weight is just equal to the weight of the

boiled-off liquid. Finally,

_/ tA2 '
Kp (T - T 2)

Sm = 2 1 v

Figure 12 is a plot of the insulation performance
factor versus time-in-storage for a 6000-1b

(26,700 newton) liquid hydrogen tank under a speci-

fic set of conditions and with a surface area of

103 ft 2 (93 m2).

If it is assumed that it is required to have a

given amount of LH 2 left (from a 6000-1b [26,700

newton] initial capacity) after a given time and the
amount of insulation is to be found, enter Fig. 12

at the time and read S. Subtract the permissible

weight of the boiled-off liquid hydrogen, the re-

mainder is left for the weight of the insulation.

From Table 3, the density of SI-4 is read. Thus,
the volume of SI-4 required to meet the prescribed

boil-off can be computed.

Now, since the area of the outer surface of such
a tank is known, the thickness of SI-4 wrapped

about the tank necessary to provide the prop-
er insulation can be estimated. Before pro-

ceeding, it is noted that the insulation for such
a tank may actually weigh slightly more than the

uninsulated tank.

Once the thickness of insulation is determined,

all that remains is to determine the no-loss time

(Fig. 11), the boil-off during Phase 3, and the

weight of tankage required.

d. Application to other cryogenic fluids

In order to apply the previous discussions to

the design of tankage for cryogenic fluids other

than liquid hydrogen, the following factors must
be taken into account.

(1) The ratio of the weight of the new cryo-

genic fluid to liquid hydrogen.

(2) Boiling point of the new cryogenic fluid

related to LH 2.

(3) The volume occupied by one pound of the

new liquid.

It is then possible by means of ratios to use the

figures given here to obtain tank designs for all

other cryogenic fluids. What must be kept in

mind is the high weight of propellants other than

hydrogen and helium.

4. Example

The problem is to find the optimum insulation

thickness for insulating spherical tanks placed on

the illuminated lunar surface (Refs. 10 and 11),

that is, to find the minimum combined weight of

vaporized propellant and insulation for tanks con-

taining liquid hydrogen, oxygen or fluorine.

For tanks on the lunar surface, an external in-

sulation surface temperature of 607 ° R (337 ° K) was

assumed (based on an average of the lunar surface

temperature and the radiation equilibrium tem-

perature of a surface exposed at normal incidence
to solar radiation).

The only need for insulation during the lunar

night would be to prevent freezing of the fluorine
or oxygen (at 97 ° to 99 ° R [54 ° and 55 ° K], respec-

tively) and to limit the hydrogen boil-off. However,

the average external insulation temperature is
estimated to be about 108 ° R (60 ° K)0 so that freez-

ing of fluorine and oxygen will not occur, and the
hydrogen vaporization rate will be only about 15%

of the day condition. Therefore, the day condition

i s controlling for insulation thickness if the con-
servative approach of designing is chosen for

propellant tanks to be exposed on either the il-
luminated or shadowed surface of the moon.

Propellant losses on the lunar surface. The
weight shown in Fig. 13 is the sum of insulation

weight and boil-off, the two being equal at the

optimum. The results are based on conduction

through the insulation only. In actual practice

the heat leaks through tank support structure

are about equal to the heat flow through the in-

sulation. An approximation to the real case
would be to increase the value read from the

curve by about 70%. The propellant weight
loss would then be the total value of the ordinate

and the insulation weight would be 70% of that
value.

Propellant losses durin_transfer. To deter-
mine losses from the tanks during the earth-

moon transfer phase:

(1) Determine optimum insulation thick-

ness based on the lunar day condition

and increase by 40%

_i = (1.40) V _i _

(2) Calculate AT/v from Table 4.

(3) Enter Fig. 14 to find "/_." Vaporized

propellant then equals

tD 2

w = -N-. _
1

(4) Double the weight found in step (3) to

account for heat leaks, and add the in-

sulation weight

W i = Ai_iP i
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Propellant losses in lunar orbit. Propellant

loss from tanks that do not land on the moon but

which are a part of the boost, transfer and de-

boost system are more difficult to define clue to

their inherently integral fabrication with the flight

structure. However, for hydrogen the loss will

probably lie between 0.01 to 0. 10% per hour of the

initial hydrogen weight. The lower value would

be a design goal for a thermally well designed

flight vehicle with separate tankage. The oxidizer

boil-off can be assumed zero for the "well de-

signed" case since the major heat exchange, even

with separate tanks, is from the oxidizer to the

hydrogen with other modes relatively small so

that the oxidizer may actually experience some

cooling.

TABLE 4

Propellant Parameters

Propellant

H 2

0 2

F 2

AT (_R)

Lunar [TransferDa b, ,

567 460

445 338

454 347

V

B!u/lb kcal/newton

190 10.7

92 5.2

72 4.1

1 Btu/lb = 0.05667 kcal/newton
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XI. ORBIT COMPUTATION

a
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SYMBOLS

Orbit semimajor axis

Right ascension

Speed of light; also. variance-covariance
matrix

Declination

Orbit eccentricity

Eccentric anomaly

Flattening; also, two-way phase coherent

Doppler frequency shift

Noncoherent Doppler frequency

Altitude above the surface of the earth

Hour angle

Inclination of the orbit to the equatorial

plane

Celestial latitude

Geocentric latitude

Geodetic latitude

Mass

Mean anomaly

Electron density

Semilatus rectum (semiparameter)

Radius vector

Radius of the earth

Radius of the earth at the observation

site

Time

Time when the vehicle encounters

perigee

Local sidereal time

Transformation matrix

Velocity; also, diagonal matrix of the
inverse variances

(F

5

E

7

0

(I

^2

f2
e

T

_a

Cartesian coordinates. See section

A. 1 for definitions of the various co-

ordinate systems

Azimuth angle

Residual

Elevation angle

Angle of the velocity vector with north
on the iocal horizontal plane; also, sector-

triangle ratio

true anomaly

Obliquity of the ecliptic

Celestial longitude

Geocentric longitude

Gravitational constant; also, mean value

Maximum likelihood estimator for the

mean

Angle of the velocity vector to the local

geocentric vertical; also, refractive
index

Range, the distance from the observer to

a body

Range rate

Standard deviation

Maximum likelihood estimate of the

variance

Orbit period

Argument of perigee

Right ascension or longitude of the

ascending node

Rotation rate of the earth, 0.7292115 x

10 -4 rad/sec

Vernal equinox (Aries)

Autumnal equinox (Libra)
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A. INTRODUCTION

The basic problem of orbit computation is the
determination, from a set of observations, of

six parameters which define an orbit. These

parameters may be the Cartesian position and

velocity components at some epoch, the classical

orbit elements (semimajor axis, eccentricity,

inclination, argument of perigee, longitude of

ascending node, and mean anomaly at epoch),

or any other set of independent quantities which

uniquely determine the orbit. The orbit compu-

tation problem may involve determination of

quantities other than the six orbit parameters,
however. For example, improved values of

physical constants, drag coefficients, tracking
station locations or thrust corrections may also

be determined in the orbit computation process.

Whether the goal of a satellite vehicle mission

is gathering of accurate geophysical data or safe

recovery of a manned capsule, accurate orbit

computation is a prime requirement since gravity
field or atmospheric density information is only

as accurate as the satellite position time-
histories from which it is derived. In addition,

there is a requirement for continual precise

knowledge of the position of manned satellites

for the safety of the pilot. The increasing require-

ment for fast, highly accurate determination of

orbits has led to many new developments of

theories, techniques and systems as well as
modifications of existing astronomical methods.

This chapter comprises a general exposition of
some methods and system capabilities for locating

an earth satellite and predicting its future

positions and velocities. Specifically, the areas
considered are tracking networks and their capa-

bilities, tracking techniques, data reduction,
initial determination of the orbit elements and

improvement of the computed orbit.

B. COORDINATE SYSTEMS AND

TRANSFORMATIONS

1. Coordinate System Definition

In the determination of orbits a multitude of

coordinate systems are frequently used. It is

convenient to define these various systems before

considering the principal problem of orbit deter-
mination, so that the definitions will be available

for reference.

Complete specification of a coordinate system

involves three geometric quantities, an origin,

a principal direction and a fundamental plane.

For example, the origin might be an observer on

the earth,s surface (a topocentric system), the

center of the earth (a geocentric system), the

center of the moon (selenocentric), the center of

the sun (heliocentric), or any other convenient

point. The principal direction might be the

south point on the horizon, vernal equinox, or

any of a number of such directions; and the

fundamental plane might be one of the customary

planes of reference, i.e., the local horizontal,

equatorial or ecliptic planes, or any other con-

venient plane. In addition, coordinate systems

may be time dependent (rotating systems) or fixed

in spatial orientation (inertial systems). Table 1

defines the most frequently used systems of
coordinates. A list of definitions of the various

terms involved in this table and subsequent dis-

cussions is presented in Appendix B.

2. Transformation of Coordinates

A rotation _ about a certain axis is considered

positive if counterclockwise as viewed from the

positive end of that axis. The general forms for

rotations of + _ about the x, y, and z axes are as
follows:

0y, = cos_ si

z, -sin_ cos_

_= Tx, _ {x, y, z_

(i)

z'%% iz _-Y'

% js

.']_

iilI :1 I:]
[_sin_ 0 cos£ J

Ty, {x,y, z}

(2)

\ z

Y,

X/ -IX'

yt

y, = sin_ cost (3)

0

- Tz, _ tx, Y ,z }

These general rules may be used to derive
transformations between the various coordinate

systems defined in the preceding subsection.
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,z' .'Y'
o#"

Y

0

Z o

Transformation of geodetic latitude L, to

geocentric latitude L

L = L' - 695:'6635 sin 2L' + i'.'1731 sin 4L'

-0"0026 sin 6L' (4)

or tan L = (I -f)2 tan L'where
1

f = _ = flattening

Transformation from topocentric hori-

zontal (Xoh, Yoh' Zoh) axes to topocentric

equatorial (x o, Yo' Zo) rotating axes

Center
of earth

North

Pole
Z

r

0

/oh
Local

/vertical

'--X: -XO
, X°h

E quatJrial/' r

plane

I:i;I °1 1i:olo
L-cos L' 0 sin L' CZohj

polar coordinates:

Xoh = O COS _ COS o]

Yoh = p cos e sina

Zoh = p sin c

where c = elevation, a = azimuth

Zoh

-- Yoh

/Xoh

(5)

(6)

sin D

sin H

= sin L' sin E - cos L' cos ( cos

sin o cos _ (7)
cos D

Transformation from topocentrie

equatorial (x o, Yo' Zo) rotating axes to

topocentric equatorial inertial axes

(xi' Yi' zi)

li!l ostsintilIil= in t s cos t s

0

where

t
S

= local sidereal time

= hour angle of vernal equinox

= right ascension of local meridian.

Zo, zi

(8)

f1'

x i //_s

-r

The polar coordinates are related as follows:

A = t -H
S

(9)

D is the same as in subsection b.

xi_ _'Xo
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Transformation from topocentric equator-

ial inertial axes (xi, Yi' zi) t° geocentric

equatorial inertial axes (x , Ye' Ze)

Center _/

X = x.+X
e 1 c

z
z i

server

Ye = Yi + Yc (10)

= z.+Z
Ze I C

where

X e = (C + h o) cos L' cos ts

Yc = (C + h o) cos h' sin ts (ii)

Z e = (S + h o) sinL'

are the coordinates of the observer in the equa-

torial inertial system and

t = local sidereal time
s

L' = geodetic latitude

h : observer,s height above sea level
o in units of the equatorial radius of the

earth

1
C =

1 - (2f - f2) sin 2 LI

S : C (I - f)2

1

f = -_ : flattening of the earth

R
c i

(C and S, as defined by R--- sin L = S sin L and
e

R e

_-- cos L = C cos C, are tabulated in the
e

American Ephemeris and Nautical Almanac).

R = R C _cos2L'+ (1-f)4sin 2 L' (12)
c e

R (1-0
= e (13)

_1 + f (f- 2) cos2L

where

R = equatorial radius.
e

Transformation from general equatorial

inertial coordinates (x i, Yi' zi) to earth-

centered inertial axes (x e, Ye' Ze)

z e, z i

i _." Yi

"'t< Ye

S /

Xe/ _x Ix.

"P t

x e _cos tx sin ty

= in tx cos tx Yi

0 z i

(14)

where

t x = right ascension of the xi-axis
meridian

= + A AA tx (15)

D is the same as in subsection b

AA = difference in geocentric longitude

between the x.-axis and the object1

being located.

Transformation from general equatorial

inertial coordinates (x i, Yi' zi) to geo-

detic coordinate

z i

Prime

1

Geodetic or geocentric longitude:
_2

__ e (16)A = A 0 + tan-1 Yix. At
I

Yi

XÂ-5



Geodetic latitude:

-1
L I = tan (17)

where

A0 geodetic longitude of the prime

direction x. at the time of trans-
I

formation

= rotation rate of the earth,
e -4

0.7292115 x i0 rad/sec

&t = time elapsed since the time of

. transformation

1

f = flattening = -2_2-4-

Transformation from equatorial inertial

coordinates (x i, Yi' zi) to ecliptic inertial

coordinates (x e, Ye' z_)

z IZi

,, Y,

dxi, x E
T

Ye =

z

cos g sin

- sin t cos_

or, since

x. -- r. cos DcosA
1 1

Yi = ri cos D sinA

z. = r. sin D
1 l

and

x -- r cos i cosk
e e

Ye r e cos I sin k

= r sin
BE E

(18)

(19)

(20)

cos i cos k =cos Dcos A

cos _ sin k = cos t cos D sin A + sin t sin D

sin R = -sin_cos D sinA + cos 6 sin D

where

t = obliquity of the ecliptic

= 23 °27' 08['26 - 0'.'4684 (tyears -

r. = r = radius vector
1 e

(21)

1900)

A = right ascension

D = declination

= celestial latitude

k = celestial longitude.

Transformation from orbit system coordi-

nates (xj y_, z w) to earth-centered inertial

coordinates (x e, Ye" Ze)

Z

I e Y_

Ye

Perigee
X e

Rotation routine:

(I) Rotation in the orbit plane about the

z axis through - T
09 0J _ -&0

(2) Rotation about the line of nodes through

-i, T
-i

(3) Rotation in the equatorial plane through

-f_, T_fl

then

IXe" Ye' Ze}

where

= T__T_i T w {x w, y , zw}

(22)

T T .T =
-i_ - i -w

os _ cosw [ -cos _2 sinw [ ilsini2 cosi sinw I -sinD cosi cosw I_Isin_2 sin

........ ' 222;2J, Isinfl cos w [ -sin_2 sin w [ -

[+COS _ COS isin w I +cos i]cosi cos w[ |

L_-in_ _in-_ ]sini cosw [-_os'i J
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Theelementsofthis transformationmatrix
arefrequentlyassignedthefollowingsymbols
for convenience:

T__ T_i T_w = Qy

Qz R

3. Data Correction

Various data corrections are usually required

to convert apparent coordinates to true coordi-

nates. Depending on the nature of the measure-

ment, corrections may be required to account

for aberration, refraction, precession, proper

motion, nutation and parallax.

a. Aberration

Since light travels at a finite velocity, the
apparent coordinates of any body in space depend

upon the motion of the body and the motion of the

observer on earth during the time interval re-

quired for light from the body to arrive at the

observer. This apparent displacement of a body

from its actual position due to the finite speed of

light and the motions of the observer and the body
is called aberration. To elaborate, the observer

perceives a ray of light which originated at the

body sometime before the instant of observation
and which traveled toward a position that the

earth would occupy sometime after the ray origi-

nated. Therefore, at the time of observation,

the moving body is no longer located in the

direction from which the light ray is observed.

Also, since the earth is moving, the apparent

direction of the ray differs from the true direc-
tion. Thus the observed direction relative to

the stars is neither the actual direction at the

time of observation nor the direction to the posi-

tion of the body at the time the ray was emitted.

Various types of aberration are distinguished.

Planetary aberration is the displacement of the
observed apparent position from the actual posi-
tion at the instant of observation. Stellar aber-

ration, a part of the planetary aberration, is the

displacement of the observed position from the

actual position of the body at the instant when the

light ray was emitted. The stellar aberration

consists of two parts, diurnal aberration and
annual aberration. Diurnal aberration is that

part due to the rotation of the earth on its axis.
Annual aberration is due to the orbital motion of

the earth about the sun.

Obviousl:_ most corrections for aberration are

significant only for astronomical determinations

on relatively remote bodies. Even for observa-

tions of the sun, only stellar aberration need be
considered. In the case of a satellite, observed

as to its distance and angular position relative to

the earth, the stellar aberration may be neglected

as being essentially the same for the satellite and
the earth. Also, a satellite experiences very

nearly the same heliocentric motion as the earth.
Therefore, aberration corrections for satellites

in practice need include only the effect of motion
of the satellite relative to the earth during the

time required for light from the satellite to arrive
at the observer. (For example, during the time for

light to pass from the moon to the earth, the moon
moves about 0."7 in geocentric longitude. ) Planetary

aberration is larger for artificial satellites. In a
circular satellite orbit, central angle traversed is

proportional to time, i.e.,

ZX0 _ t (Z_ 0 in radians).

Since the period is

"r = 2w r_-_ ,

t

where r is the satellite orbit radius. The time

required for light to traveI from an overhead
satellite to the earth is

r-R
t = --

c

where R is the radius of the earth and c is the

speed of light. Therefore, the planetary aber-
ration is

A0 - r-R _f_T"er

This quantity has a maximum for r = 3R,

AO _ 2? 1
max

The following sections briefly consider

methods used for computing the effect of aber-

ration. A more detailed description is con-
tained in Ref. 1.

(1) Stellar aberration

Planetary -X

aberration _

B

-

E iteirl_*

•

_T

B t

In stellar aberration determinations the fol-

lowing notation is used:

= earth' s orbital velocity in inertial,

fixed-origin coordinates (x, y, z)

_* * velocity vector of the actual light ray

_' = relative velocity vector of the light ray

XI-7



=instantwhenanobservationis made

t

ET, Et

BT, Bt

B
a

= earlier time when the ray observed

left the body

= actual positions of the earth at the

times T and t, respectively

= actual positions of a body at the

times T and t, respectively

= apparent position of the body at time

T

T =T-t=

ID = TC =

time for light to travel from the

body to earth

geometric distance E T B t

Aa, A T = longitudes of the apparent direction

E T B a and the true light path E T BT,

respectively

La, L T = latitudes corresponding to Aa,

Then the direction cosines of E T B a are

A
T"

cos L a cos A a =cos L T

V
X

cos A T + --c

cos L sin A
a a

v (24)

= cos L T sin A T +---Yc

V
Z

= sin L T +--cs in L a

where Vx, Vy, V z are the components of v

These direction cosines give

tan (A a - %) (25)

_ -sec L T (vx sin A T - Vy cos A T )

c + sec L T (vx cos "&T +v sinA T)Y

tan (L a - L T)

v z cos L T - (vx cosA,f +Vy sinA T) sin L T

v z sm L T + (vx COSA T +Vy sinA T) cos LT+C

+O(sin 2Aa -AT),

where:

O (sin 2 Aa -AT)-_ denotes terms of the

order of the quantity in the brackets.

In rectangular coordinates,

Vx Pt

-Xt = ---- =v 7Xa c x

Ya - Yt = _ = v 7
c y

Vz Pt

-Zt = -v 7Za c z

(26)

where

(Xa' Ya' Za) are the apparent coordinates

of the body at the instant of observation T

(X,t" Yt' Zt) are the true coordinates of

the body at the time the light left the body.

(2) Planetary aberration

The planetary aberration is the stellar aber-
ration corrected for the motion of the body from

B t to B T during the time for light from the body

to reach earth (see previous sketch). This cor-

rection may be computed from a Taylor series,

e.g._

XT- Xt = _2t_+ 21-Xt 72 -_'Xt 73 +" " "

Then the rectangular components of the

planetary aberration are

Xa _ XT = (V x _ _t)7 ___xtl'" 72 _ _X t''" 73...

a - 7 - gYt _ " " "W - YT = (V,y Yt )7 - _ Yt 2 1"" 3

_t ) 1 zt 2 _... 3Z a - Z T = (V z - 7 -g 7 - Z t 7 -...

(27)

where (Xt0 Yt' Zt) are given in the preceding

subsection. The terms of order 72 and higher

can usually be neglected. In terms of right as-

cension and declination the planetary aberration

can then be cxpresscd as

(28)

/'D = -D

where R T = @XT2 + YT 2 +ZT 2

(3) Diurnal aberration

Because of the earth' s rotation, the observer
moves toward the east at a rate

R
C

= 464_-- cos L
e

meters/sec

(29)

where

R = radius of the earth at the observer's
e location

R = equatorial radius of the earth
e

L = geocentric latitude of the observer.

This motion causes a shift in apparent position

of remote bodies toward the east given by

XI-8



stn

where_is theangulardistancefromtheeast
pointto thebody. Then,in termsof right
ascensionanddeclination,thediurnalaberration
is

R
_A = 0'.'319 W _- cos L cos H sec --D/

e

R c
AD 0'2319 _-- cos L sin H sin D]

e

(3O)

where H = hour angle of the body.

The effect of diurnal aberration may be
neglected except where relative positions of

widely separated bodies are being measured.

(4) Annual aberration

The annual aberration, due to the earth's

orbital motion, in terms of right ascension and
declination is

_A = C 1 c 1 + C2 c2

! l

±D = C 1 c 1 + C 2 c 2

(31)

where

c I =cos A see D

c 2 •stnA sec D

1

cI, =tan g cos D - sin A sin D! it, =obliquity]

c 2 = cos A sin D

and

C 1 = -20'.'47 cos X.@ cos

[k@ = true longitude of sun]

C 2 = -201'47 sin k@

are tabulated in the American Ephemeris.

b. Precession

Precession is the combination of the slow

change of direction of the earth's axis of rotation

and the slower change of direction of the axis

perpendicular to the ecliptic. The first effect is

due to the action of the sun and the moon (luni-solar

precession), the second is due to the action of the

planets (pianetary precession).

As a result of precession the vernal equinox

is slowly regressing at a rate of about 50 sec of

arc per year; therefore_any coordinate system
which has as the principal direction the vernal

equinox must specify a date to which it is referred.

To change from one equatorial system, say

referred to the mean equinox of date, to another,
say to the mean equinox of some other standard

date dike 1950.0), the foliowing operations

shouid be performed:

x d = X + Yx + Z z 1x x1950 Y1950 x 950

Yd = Xy x1950 + Yy Y1950 + Zy z1950

Zd =Xz x1950 + Yz Y1950 + Zz z1950

(32)

or

x1950 =Xx Xd - Yx Yd - Zx Zd

Y1950 = -Xy x d + YyYd + Zy z d

z1950 =-Xz Xd + Yz Yd + Zz Zd

where the subindex

and

d = mean equinox of date

1950 = mean equinox of 1950.0

X
X

= 1.000 000 00 - 0.000 296 97 T 2

- 0.000 000 13 T 3

Y
X

=-X
Y

= -0.022 349 88 T-0.000 006 76 T 2

+ 0. 000 002 21 T 3

Z = - X
x z

Z = Y
y z

= -0.009 717 11 T+ 0.000 002 07 T 2

+ 0.000 000 96 T 3

g = 1.000 000 00 - 0. 000 249 76 T 2
Y

- 0.000 000 15 T 3

= - 0.000 108 59 T 2

- 0. 000 000 03 T 3

Z = 1.000 000 00 - 0.000 047 21 T 2
Z

+ 0.000 000 02 T 3

where T is measured in Julian centuries from
1950.0

The Julian Calendar is discussed and a table

presenting Julian Day Numbers presented in

Chapter II.

T =[Julian date number for epoch -

Julian date number for 1950.0] /36525

c. Nutation

Due to the solar and lunar attractions on the

equatorial protuberance of the earth, the celestial

pole travels in a small ellipse around its mean

position on the circular precessional path. The

correction for nutation is very small and may

generally be neglected except in precise astronomical
determ [nations.
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Tables for nutation in longitude and in obliquity

are tabulated in the American Ephemeris and

Nautical Almanac each year. An explanation of

how those tables are obtained is given in Astronomical

Papers of the American Ephemeris, vol. XV,

Part I0 p. 153, 1953, and in the joint supplement

to the American Ephemeris and Nautical Almanac

entitled "Improved Lunar Ephemeris 1952 - 1959,"

pp. ix-x, 1954.

To obtain rectangular coordinates referred to

the mean equinox of date when those referred to the

t rue equinox are available, perform the following

computations :

x = x d Xy - Yd Yz - Zd Zz

y = -x d Xy + Yd Yz + Zd Zz

z = -x d x z +yd Yz +zd Zz

(33)

whe re

Z
Z yy = 1= = X x

= = AdCcost sin 1"
-Yx Xy

-z x =x z = /_sin6 sin I"

and

-Zy =Yz = Atsin 1"

t = obliquity of ecliptic

At, and _ _b are, respectively, the rates of

nutation in obliquity and in longitude (ob-
tained from the tables mentioned above) in

units of seconds of arc.

d. Refraction

Refraction is another source of deviation be-

tween the apparent and true directions of optical
or radio measurements. The curvature of

electromagnetic rays due to refraction is greatest
for measurements of small elevation above the

horizontal plane. From Snell' s law, the cor-
rection to be added to the observed elevation is

O O

ds ---_ £" _7_dsc (34)/_c = p-- v
b

where the integral along the ray path is taken

from the body observed, b, to the observer, o,
and

Pc = radius of curvature of the ray path

v = refractive index

An = unit vector normal to the ray path

s = arc length along the ray path

Specification of the variation in v along the path

may be very difficult. One approach is numerical

iDtegration of the integral expressed as

a i tan (2i + l)za

i

where the a., s are empirical coefficients and

z is the apparent zenith distance. In several
a

studies of radio wave refraction, two components

of the refractive index are distinguished:

tropospheric refraction:

103.49 (Pa -Pw ) +[_86_6(,'- I) 106 - K

(35)

where

Pa =air pressure, mmofmercury

Pw =water pressure, mm of mercury

K -temperature in degrees Kelvin

or

-0 142 (h - a)v - i = 105 x 10 -6 e "

(+ 15%, h> 9 km)

ionospheric refraction:

v =_1 4vNc_ =_1 -

n2¢o
o

3.18 x 109N

2
(D

(36)

where

N = electron density, electrons /cm 3

= charge of the electron

m =mass of an electron

= dielectric constant
0

=frequency in radians per second

Electron density is tabulated in Chapter II. Ref

(2) enumerates the phase changes which occur

in propagation for the various radio tracking

techntque s :

Range measurement:

up down / (37)

Doppler measurement:

=_- _ vds =K b b " p _ d

(assuming isotropic v) (38)
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Interferometermeasurement:

/_*s c- vds - 'vd (39)

5±e =_-- Axsinc /x_ (40)
C

where the integrals are taken over the ray path
and

O

&_t

e

v

b

?

Ax

and _

4.

= range

= temporal phase difference

= spatial phase difference

= difference in rate of change of phase

= frequency (rad/sec)

= speed of light

= refractive index

= subscript indicating a value of the

body

= unit vector tangent to the ray

= tnterferometer baseline length

= is defined in Eq (34)

Data conversions

Trans formation between topocentric
coordinates and direction cosine data

= COS E COS O_ = xO''h

P

Yoh
m = COS e sin a =--

P

2 Zohn = 1 - _2 _ m = sin c -
P

z 0

[' / oos

x 0

-1
n

(41)

YO

From the differentials of these relations

d_
dXoh Xoh +

= p ---T (Xoh dXoh + Yoh dYoh
P

(continued)

+ Zoh dZoh)

dm dY°h Yoh
- p _ (Xoh dXoh + Yoh dYoh

P

+ Zoh dZoh)

dZoh Zoh
dn = ---'3- (Xoh dXoh + Yoh aYoh

P p

+ Zoh dZoh)

the correction relationship is

dm

n

f t-I m 1- m 2= -mn

in -ran 1-n h

-= Tilde)

Transformation between topocentric
coordinates and radar data

whe re

Xoh = p cos _ cos a

Yoh = p cos c sin

Zoh = p sin c

_," Xoh _'Yoh

South

p = range

= azimuth

" = elevation

The inverse relationships are

p =_]Xoh 2 + Yoh 2 + Zoh 2

Zoh
sin e -

P

Yoh
tan o -

Xoh

(42)

(43)

(44)
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The sensitivities of topocentric coordinates to
radar data corrections are obtained from the

differentials of the above expressions.

I )do = _ (Xgh dXoh + Yoh dYoh +Zoh dZoh

dZoh Zoh
cos e d c =

p --3- (Xoh dXoh + Yoh dYoh
O

+ Zoh dZoh)

2 dYoh Yoh

sec ada = -- --_ dXoh

Xoh Xoh

os E d = (45)

cos eoso ,cos,sins,sin   Xoh
- -- sin _ IP

sine cos _I- _ sin sl Ip _J[_ hJ

The transformations of the time rates of these

variables are as follows:

1 (Xoh + • + . )= _ Xoh Yoh Yoh Zoh Zoh

= Xoh Yoh - Yoh Xoh (46)
2 2

Xoh + Yoh

= Zoh (Xoh Xoh + Yoh Yoh ) - Zoh (Xoh 2 + Yoh 2)

_Xoh 2 2_ p2 + Yoh

C. ACQUISITION OF DATA

1. Tracking Techniques

Orbit data are chiefly acquired by either

optical or radio techniques. Optical trackers
have the advantage of extremely accurate topo-

centric angular measurements, and the dis-

advantage of not being able to measure range

directly (range is found by triangulation). Hadar

trackers, using much longer wave lengths (1 in.

to 50 ft), have the advantage of accurate line-of-

sight measurements but the disadvantage of

relatively poor accuracy in angular measure-
ments. The radar trackers are able to attain

their high accuracy in line-of-sight measure-

ments because radio waves can be generated with

very narrow bandwidths; hence, the measure-

ments of single frequencies are practical. Since

the velocity of electromagnetic wave propagation

is known rather accurately, the range (the

velocity of light times the transit time) can be

measured with good accuracy. The other line-

of-sight measurement based on the doppler effect

involves a comparison of the transmitter fre-

quency to the received frequency in order to de-

duce range rate. Since the frequencies of a light

transmitter spread out over a wide band and are

uncorrelated, great difficulty is encountered in

attempting to follow any one frequency and meas-

ure its Doppler effect. Only recently has pure

light, with a very narrow bandwidth, been gen-

erated with high intensity.

Thus optical cameras such as the Baker-Nunn

camera are used to measure the topocentric

angles of satellites and radars are used for both

line-of-sight measurements and angles (even

though angles degrade the accuracy).

a. Optical systems

Optical systems which may be used are:

Baker-Nunn camera, recording optical tracking

instrument (ROTI). Cine theodolite, and ballistic

cameras. A complete description of one, the

Baker-Nunn camera, follows:

Features: field of view = 5 ° x 30 °

focal length = 20 in. = 50.8 em

accuracies = 2 " (claimed)

limiting magnitude: 17.2

(when tracking object on
celestial equator).

Description: Modification basic Schmidt

design which has wider field

of view than most telescopes
or cameras; uses three-element

correcting system for aber-
rations.

Advantages: Wide field of view, without
excessive aberration.

Disadvantages: Slow processing; no direct

range or range rate measure-

ments, sometimes takes a

week to process a single

photograph, sometimes the

star background is too sparse.

b. Radio trackers

Various techniques have been developed to
obtain the highest accuracy from radar measure-

ments. Three broad classes oftechniques are
discussed:

(1) Radar measurements

(2) Interferometer techniques

(3) Special techniques to reduce measure-
ment errors.

Radar measurements can be classified into

line-of-sight measurements and angular measure-

ments. Line-of-sight measurements are range

and range rate; angular measurements are usually

azimuth and elevation. Since the wave lengths

of the radio waves used by radars are relatively

large compared with the dimensions of the typ-

ical radar antenna, the angular measurements

are usually less accurate than the line-of-sight

measurements. Many systems such as Minitrack

and General Electric Mod II use triangulation

schemes with only range measurements. By using
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at least three stations in a coherent manner, the

topocentric angles of the satellite can be com-

puted. Generally, range measurements use

monopulse systems.

(I) Range measurements

There are two types of range radars.

Skin track radars depend on the reflection

properties of the satellite' s skin to reflect the

transmitted pulse back to the receiver. Of

course, the reflected pulse is greatly reduced in

amplitude. Since the reflected pulse is weak,

and since it is desirable to send out as many

pulses as possible during a pass, complex gates

must be built into the receiver and usually high

redundancy must be in each pulse to help

separate the signal from the noise.

Beacon track radars can either be monopulse

or continuous wave-single frequency carrier
types. Beacon track radars depend on a trans-
mitter on board the satellite which can be in-

terrogated by a ground transmitter. Since the

return pulse is much stronger than that of the

skintrack radar, beacon track radars are more

accurate in range measurements. However, the

added weight of the onboard transmitter some-

times precludes using beacon track radars.

(2) Doppler systems

Another radar technique is to measure the

change in carrier frequency as the satellite either

recedes or approaches the radar station. One of

the differences between this technique and the

above pulsed systems is that the transmitter and

receiver of the tracking station must be phase

locked onto the satellite in order to obtain ac-

curacy, which means that phase information of

the carrier is retained. The frequency trans-

mitted can be measured by counting its energy

maxima or minima; the received frequency is

measured the same way. The result is a frequency

difference which is proportional to the range rate

of the satellite. Range can sometimes be measured

by integrating the range rate (provided the con-

stant of integration is known).

(3) Angular measurements

Direct angular measurements (that is, not

using triangulation techniques with line-of-sight

measurements) can be made as follows: Suppose

a radar antenna is highly directional so that when

it does not point directly at the satellite (assuming

a satellite beacon and neglecting refraction effects),

the signal strength falls off. The signal strength

is at a maximum when the antenna points directly

at the satellite. When the maximum signal strength

is indicated the orientation of the antenna can be

measured in azimuth and elevation.

(4) Interferometer systems

Interferometer systems measure the difference

in times that a radio wave front from a satellite

strikes differently located tracking stations (see

Fig. 1). By the time that the wave front reaches

the tracking stations it is almost planar; and the

approximation that

b cos_ = k = c (t2 - t I)

is fairly accurate. The elevation c can be found

from the above formula.

Minitrack is an example of a tracking system

which uses the above interferometer technique

in modified form. The tracking portion (dis-
tinguished from the acquisition portion) of each

Mi_nitrack "station" consists of five antennas.

The central antenna transmits and receives;
eaehof the others only receives. Two of the
receivers form a north-south line with central

included; the other two receivers form an east-

west line with central. The resulting beam

width from the length of the baselines is 100 °

(north-south) by ll ° (east-west). See Fig. 2.

Notice that, since the antennas are fixed in

direction, the Minitrack station cannot track

unless a satellite passes through its fan-shaped
radio beam.

(5) Special techniques

Noise reduction techniques may be listed as

(1) Low noise receivers

(2) Choice of frequency

(3) Modulation scheme and redundancy

(coding, correlation)

(4) Frequency diversity to avoid multipath
errors

(5) Time standards and synchronization

(6) Search or acquisition techniques

(7) Antenna design

(8) Coherent and noneoherent systems

Low noise receivers. These receivers are the

masers and reactance amplifiers. Masers

(microwave amplification by stimulated emission

of radiation) utilize the high Q properties of the

natural resonance frequencies of certain materials

such as ammonia, cesium vapor and rubidium.

A reactance amplifier increases the signal-

to-noise ratio of the receiver by pumping energy
into the signal in a manner related to the phase

of the incoming signal. In this manner the

phase information redundancy of a carrier is

not thrown away.

Choice of frequency. The atmosphere is

opaque to most radio frequencies; however, there

is a "window" to radiation in the region from

300 to 10,000Mc. Water vapor absorption limits

the upper frequencies and thermal excitation

lirnits the lower end of the spectrum.

Modulation schemes and redundancy. One

scheme for usmg the redundancy of the signal

has already been mentioned. The common

modulation schemes are amplitude modulation,
frequency modulation and pulse time.

Frequency diversity. Frequency diversity

systems use two or more carrier frequencies

to minimize frequency effects in propagation.

One of the major sources of error in propagation
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is theionosphere,whichactsasatimevarying
dielectric, thuschangingthefrequencyof a
carrier inanunpredictablemanner. The
ionospherealsorefractsradiobeams,thus
changingthedirectionofthebeam.Thefollowing
formulashowshowtheindexof refractionis a
functionof frequencyandiondensity:

where
v =indexof refraction

N =iondensityinparticles/cm3

f =carrier frequencyin kc
Usingtwofrequenciesallowstheindexof re-
fractionto beestimated,thusminimizingthe
error dueto bendingof theradiowive.

Thechangein frequencyduetothevariable
indexof refractionhasbeencalculatedby
Guier and Weiffenbach to be:

rcf0 /

f - f0 = v0_ _cos

where

_t_ 1 dr _ u cos h 1h +_- _- r2 _ 2
_0

v 0 = equivalent refractive index at earth's
surface

r = the geocentric distance of the station
C

_(t) = angle between the station vector and

the geocentric distance vector of the
satellite

r = geocentric distance

h = height

c = velocity of light _ 3.00 x 1010 cm/sec

Time standards and synchronization. Some

classes of orbits and some types of orbit com-

putations (determinations) require very tight

synchronization, whereas others need con-

siderably less. If three stations are to take

simultaneous range measurements, then the

simultaneity requirement will generally limit the
three stations to smaller baselines, and com-

plicated synchronization techniques are needed.

On the other hand, overdetermined orbits do not

need such tight synchronization and baselines

as wide as the earth are feasible (satellites could

also be used for tracking stations resulting in

very wide baselines).

One technique for synchronization of preci-

sion radars is to use gas filled wave guides in

which the temperature are pressure can be con-

trolled to the extent that the velocity of propaga-

tion is very precise. Generally, a central sta-

tion is connected via wave guides to outlying

stations; the signals and time are sent to central

from the other stations via the wave guides. If

line-of-sight radio beams were to be used instead

of wave guides, then significant errors, such as

multipath errors and variable time delays due to

temperature sensitive dielectric constants of the

propagation medium, would occur.

Another technique used for synchronization

when the time requirements are not quite so

stringent, is to use WWV receivers. WWV trans-

mits very accurate radio pulses on frequencies of

2.5, 5, 10, 15, 20, 25Mc. Through the use of

new techniques such as parametric amplifiers,

the frequencies are accurate to several parts in

1011. Received frequencies, if by line of sight,

can be nearly as accurate as the frequency trans-

mitted by WWV; if the received frequency is re-

ceived via the ionsphere reflection, then the ac-

curacy varies, sometimes degrading to a few

parts in 106 during solar storms.

2. Station Properties

Table 2 lists some of the existing satellite

tracking stations and their properties. Where the

information is incomplete or changes are antici-
pated, blanks are left so that insertions or modifi-

cations can be made. The information presented

should allow a good first estimate of whether or

not a station might usefully support a given mis-
sion.

Additional information on these and other

stations is available from Goddard Space Flight

Center, Greenbelt, Maryland, attention Code
531.3.

Explanation of Table 2

Station number--An arbitrarily assigned

serial number for cross referencing within
this handbook.

System--The net of tracking facilities, if
any, to which the particular station is

assigned.

Cognizant a_ency--This is the activity

responsible for the scheduling and operation
of the station; if should be contacted to ob-

tain support from this station. Abbrevia-
tions are:

AMR Atlantic Missile Range

Cape Canaveral, Florida

APL Applied Physics Laboratory
Johns Hopkins University

Silver Spring, Md.

BRL Ballistics Research Laboratory
Aberdeen Proving Ground
Aberdeen, Md.

GE General Electric Corporation

General Engineering Laboratory

Schenectady, New York

GSFC Goddard Space Flight Center
Anacostia Naval Station

Anacostia, Maryland
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JPL Jet PropulsionLaboratory
CaliforniaInstituteof Technology
Pasadena,California

MIT Lincoln Laboratories

Massachusetts Institute of

Technology
Boston, Mass.

NAA Space and Information Systems
Division

North American Aviation, Inc.

Downey, California

NERA Radio Receiving Station NERA
Nederhorstdenberg, Netherlands

NSSC National Space Surveillance
Center (Spacetrack)

Code CRRKI, AFCRC
L. G. Hanscom Field

Bedford, Mass.

PMR Pacific Missile Range

Pt. Mugu, California

RADC Rome Air Development Command
Griffiss AFB

Rome, New York

SRI Stanford Research Institute

Menlo Park, California

STL Space Technology Laboratories

One Space Park

Redondo Beach, California

UILL Electrical Engineering Re-

search Laboratory

University of Illinois

Champaign, Illinois

USASRDL US Army Astro Scientific

Research and Development

Laboratory

Deal, New Jersey

VAFB Vandenber g AFB

Lompoc, California

WRE Weapons Research Establish-
ment

Woomera, Australia

WSMR White Stands Missile Range

White Sands, New Mexico

Station name--A designation descriptive of

location and/or equipment.

Installation type--Equipment classification

Several widely distributed

radio systems are described in Table 3.

Where the installation type is unique or at

least not widely used at present, the table

gives the particular antenna configuration.

In this case, generally only the primary

antenna is described, and there may be

others for different frequencies or purposes.

Local designation--A code used by the

cognizant agency to identify the station

within the agency.

N Lat (deg)--The geodetic north latitude

of the station, measured in degrees.

E Long. (deg)--The geodetic east longitude

of the station, measured in degrees.

Altitude (meters)--The height of the antenna

feed at zero degree elevation above mean
sea level, measured in meters.

Survey reference--The basic survey to
which the station's location is referenced,

Data reported--Advertised and/or known

observations from a given station. More

may be available.

azimuth measurement

elevation or astronomical altitude

measurement

H hour angle

D declination

O range measurement

range rate

f
non noncoherent Doppler frequency, the

received frequency from the satellite

being tracked, including Doppler

frequency shift s

two-way phase coherent Doppler

frequency shift. Range rate can

be accurately and directly extracted
from f in most cases

Tel telemetry, analog or digital coded
information communicated from the

satellite

Units--Basic measurement system in which

t_ta if reported. Data reported and

units are on the same respective lines in
Table 2.

Coordinate system--Indicates how the
station's antenna is mounted and calibrated.

Antenna steering data (ephemerides) should

be supplied in the system and units specified.
The asterisk means that the units desired

differ from those reported and are artillery

mils for angular measurements.

Accuracy (3o)--This is statistical 3o to
which a given measurement is accurate.

Data formats--Indicates the data output

eqmpment available. Most manual outputs

work into a teletype system. Almost all
automatic outputs work into a teletype sys-

tem. Almost all automatic output systems

may be read manually, so only the higher
order available output is shown.

Data delay--The estimated nominal time

for handling data at the station before it is
transmitted to the user. Abbreviations are

as follows:
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RT Realtime, whichsignifiesthatthe
datais transmittedviaanon-line
processandwill bereceivedby
theuseressentiallythesametime
thatthestationobservesit.

NRT Nearreal time--lessthanl-min
delay--essentiallythesameas
realtimeexceptfor slightdelays
sucbasthosecausedbydatagoing
throughteletypetapeloops,etc.

Maximumrange--Therangelimit onthe
particularinstallationwhentrackinga
passivel-m 2target.

Antennagain/frequency--The advertised
approximate antenna gain in a particular

frequency band.

Table 3 contains descriptions of some of the

more widely used radio tracking systems.

3. Data Acquisition

Mission constraints generally dictate the data

sources and tracking time available to each source
for a given pass. Low altitude earth satellites

are usefully visible from a given station for about

5 to 20 min, and, if the satellite's period is on the

order of 120 min, three to four stations more or

less evenly spaced along the ground track of the

satellite can track and produce data so that data

processing facilities will not be overloaded. Pre-

launch planning must always include the possibility

of a nonnominal orbit, and data handling and orbit

computation operations must be capable of pro-

ducing results under this "worst condition. "

Orbit determination tasks seldom have the prob-
lem of an overload of data, and, when it arises,

it is easily controlled.

The threat of insufficient data is best met by

considered overdesign of the tracking network.

Some redundancy in the tracking systems is

desirable, so that failure of a single system will

not require reliance on optical or skin track

radar methods for further data. Optical methods

are slow and dependent on such uncontrollable

items as weather, and large skin track radars

generally have other commitments. One tracking

station with high acquisition reliability should be

able to track immediately after injection of the

satellite into its free flight orbit, since in many

cases the data is better at shorter ranges and

time-propagating position errors are reduced.

Accurate determination of the time of injection

(orbit epoch) is possible from telemetry or Doppler
data.

The problem of locating tracking stations to

provide maximum certainty in orbit determina-
tion involves three considerations:

(i) Maximizing basic orbital information.

(2) Maximizing the visibility period, con-
sistent with other requirements.

(3) Measuring with maximum certainty.

Maximizing the basic orbital information de-

pends strongly on what part of the orbit is being ob-

served. For any given coordinate system, there

exist orbits and locations on the orbit path which

give ambiguous coordinates. For example: (I) it

is very difficult to resolve the line of nodes (in-
tersection of orbit plane and equatorial plane) if

the orbit is equatorial or near equatorial; (2) it

is also extremely difficult to locate perigee when

the orbit is nearly circular; (3) if a station is

located such that it observes perigee passage,

the orbit determination might be very poor be-
cause so few observations would be obtained and

the noise on the observations would obscure such

vital information as time of perigee; (4) in the

least-squares fitting of observations in orbit
determination (described in Section E. 2) the

partial derivatives (of the observation quantities

with respect to the orbital elements) can be

manipulated to indicate the information content

of a pass, orbit, orbits, etc.

Maximizing the visibility period means more

observations for a given situation, but careful

notice must be taken of the information gained

from each observation. This requirement can

be approached by attempting to either adjust the
network to maximize visibility or to adjust orbits

to existing networks. Most system designs are

compromises of the above two approaches.

Measuring with maximum certainty means

measuring in such a manner that most errors
are minimized.

Data rate. To minimize random errors, the

highest data rate possible is desirable in order

to obtain the maximum number of data per pass.
However, the assumptions of independent data

become poorer as the data rate is increased.

If the correlation between measurements falls

off exponentially with time, then there is a pre-

dictable data rate above which greater errors

are given in the orbit determination rather than
less.

Measurement ambiguities. A simple example

of a measurement ambiguity to be avoided follows.

Suppose the tracking station measures range p,
azimuth _ and elevation ( , of the satellite with

respect to the radar location.

It can be seen that when ( equals exactly 90 °,

the azimuth measurement is ambiguous; and when

E only approaches 90 ° , the azimuth measurements
become more uncertain.

Transformation ambiguities. Transformation
ambiguities may result in the trigonometric trans-

formations of the topocentric coordinates into

orbital elements. An example of this is the trans-

formation of the inertial, geocentric spherical

coordinates r, A and D, into the radar quantities
O, c_ and c.

One possible transformation equation is

sin (D s - D) = _ (cos _ cos _)
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where (l) Are readily available as a leased

service.
D : declination of the satellite in in-

ertial coordinates

D = declination of the station in in-
s

ertial coordinates

= geocentric distance of the satel-
lite.

Examination of this equation shows that D in-

formation is lost when the azimuth c_ measure-
ments approach 90 ° , that is, when the satellite

heads due cast from the station. In a like man-

ner, all coordinate transformations have am-

biguous answers where the inertial orbital ele-

ment cannot be determined at that time. One of

the ways of resolving ambiguities is to have an

overdetermined orbit; another way is to adjust
the orbit or the station location such that the

ambiguities do not occur.

Errors may be minimized by suitable station
calibration techniques and methods.

It is undesirable to attempt an orbit deter-

ruination from a single station _ s data on one

pass. The station's random errors generally

preclude computation or an orbit sufficiently ac-
curate to furnish position predictions which will

enable a narrow beam radar to acquire one orbit

revolution later'. Experience dictates that data

from at least one tracking pass from each of

two well spaced stations (preferably through

apogee, and 90 ° to 18(I ° from apofiee) is required
to determine the initial orbit achieved.

Satellites in highly elliptical orbits (perigee

high enough to be free from drag effects) and

space probes present less stringent require-

ments on the tracking system, unless midcourse

guidance is involved, because more stations

have visibility for longer periods of time and

data is plentiful. Midcourse guidance rettuires
rapid and accurate orbit determination if satel-

lite fuel requirements are to be kept within

reason. As little as an hour may be available
to track the satellite, process data, determine
the orbit, and calculate the time and duration of

the rocket firing for correction of the satellite

trajectory.

Under these conditions, prelaunch planning
must include limitations on the tracking time

and the number of data points, to ensure that
adequate computation time is available. Several

data handling modes should be available so that

last minute equipment failures do not jeopardize
the mission.

4. Data Handling

Communications should be established at

least one hour prior to the earliest scheduled

liftoff to ascertain that complete circuit com-

munication [s available. Once liftoff occurs,

data should begin to arrive from the tracking
stations.

Teleprinter circuits are a favored method for

transmitting data because they:

(2) Are the rnost reliable rapid communi-
cation.

(3) Produce punched paper" lape and

printed, multicopy output.

(4) May be gauged together on a single
circuit at little exlra cost.

]'he received information may be:

(1) Supplied as electrical impulses in

teletype code _o electronic conversion

equipment which writes it on a magnetic

tape in computer code, or enters it

directly into the computer.

(2) Punched onto cards by passing the
paper" tape lhrough a tape-to-card

rnachine. (These cards are checked

for bad points and are then read into

the computer.)

(3) Manually transcribed to load sheets,
keypunched to cards, and then read

into the computer. (This method is

used if the data is irregular in some

respect and cannot be handled as

described in the first two methods.)

The availability of at least two of the above
methods is recommended. Experience has shown

that flexibility is a p_-ime data handling require-

ment. Extremely useful observations may be re-

ceived in an irregular format when previously
coordinated sources have failed to acquire the

satellite, and the orbit determination agency
should be prepared to use them.

Generally, the transmission of information

from [racking stations to a central data gathering
center is over a narrow bandwidth channel such

as a telephone circuit. This means that the in-

formation cannot be fed over the lines very rapidly.

Error- checking slows down the rate even more;

to check for all errors would require an extremely

long time. The result is that high probability

error classes are checked automatically or semi-

automatically; low probability errors are not ex-
eluded.

5. Data Filtering

Two extreme cases of how the data could be

processed are: (I) the raw data could be fed into

a central data gathering center and processed

there and (2) the data could be processed at each

station. If each tracking station completely

processes its own data, there is not only a duplica-

tion of computing equipment (one for each station}

but each station is not taking full advantage of
other stations f data. If all data is fed raw from

each tracking station _o one central computer,

then far too much bad data gets into the orbit de-

termination routine. The usual compromise is

to have one central computer do the final editing,

smoothing and orbit determination, but have each

tracking station perform its own local calibrations
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andsomedatasmoothingandeditingfor grossly
erroneousdata.

Whena sufficientnumberofpointshaveac-
cumulated,thepreliminaryprecisionorbit is
determined. The differential correction tech-

nique using least squared errors is the method

usually used; it is described later.

An optimum filtering scheme has two con-
flicting requirements imposed on it: (1) to use
all the information contained in the observation

and (2) to reject all misinformation contained in
the observations.

Since there are no perfect data, all observa-

tions have varying degrees of noise or unknown

errors associated with them. Using all the in-

formation contained implies accepting all data

points. Rejecting all misinformation implies

rejecting all data points. Filtering schemes

attempt to improve the accuracy of an orbit de-

termination by various compromises with the two

above contradictory requirements. One such

compromise is to reject all "obviously" bad

data. Such data only degrade the curve fits,
since they contain so little information. Another

compromise is to maximize the probability of
the accuracy of the estimates of the orbit

parameters. This compromise is effected by

determining the maximum likelihood estimates

of the orbital parameter. There are two dif-

ferent ways of determining a bad point: (1) by

taking more observations, thus increasing the

probability of obtaining a more accurate fit,

or (2) by a priori knowledge of the true trajectory

or a priori knowledge that a given point is bad.

The best filtering of the data, if random errors

(only) are present, uses a least square fit
(described in Sections E.2 and F) to curves con-

strained by the known (i.e., well determined)

laws of physics. Unfortunately, to use all the

points in the curve fitting procedure would de-
grade the orbit determination so much that the

computation would almost always result in an

ambiguous answer. (In other words, so many
orbits would fit the set of observations that the

estimates would not be consistent.) Additionally,

if much of the bad data had been rejected pre-

viously by quicker methods, fewer computations

would be needed to reject the bad data.

An efficient filtering scheme must divide the

filtering between the tracking stations and the

central computer, such that most of the above

problems are minimized. It is instructive to

contrast the extremes of too much local filtering

at the tracking stations and no local filtering.

Excessive local filtering. If data is rejected
on the basis of simple curve fitting, the curve

being fit would be in error and there would be a
tendency to reject "good" data.

If data is fit to curves representing the known

laws of orbital mechanics, then a complex com-

puter is required at each station. However, each

station would have the disadvantage of not using
data from other stations.

If each station fits all data to curves repre-

senting orbital mechanics, then each is really a

central station and there is inefficiency in that

the same computations are being duplicated in
each station.

No filtering at local station. If no filtering
occurs at each station, the computation center

is swamped with bad data, unknown biases (e.g.,
biases known to local stations but not to central),

increased transmission errors, and less infor-

mation per unit time being fed to central.

D. DETERMINATION OF PRELIMINARY

ORBIT ELEMENTS

Two areas of the problem of orbit determina-

tion are generally distinguished:

(1)

(2)

Preliminary orbit determination--

more or less approximate calculation

of an orbit which was previously com-

pletely unknown.

Orbit improvement--refinement in ac-

curacy of elements already known

approximately.

This section considers the problem of preliminary
orbit determination; Section F considers orbit

improvement. Many methods of determining

preIiminary orbits are available. The best

computation technique to use in a given problem

depends on the types of data available. Table 4
shows the appropriate computation schemes to be
used for the various combinations of observa-

tional data.

Several methods are described briefly below.

Reference 4 considers some techniques in

greater detail.

1. Method of Laplace

The method of Laplace depends on the solu-

tion of the differential equation of motion by

Taylor series. That is, a solutionof the equa-
tion

d2F ' F

= -U-._ r

(47)

will be written in the form

r=r0 dr] (t _ t0) +_ d2r I (t _t0)2 ++_IY 0 _ "'"
0

(48)

Evaluation of the derivatives (the series coeffi-

cients) of Eq (48) from Eq (47) and collection of

terms gives

F(t) =
I (t - t0 )2 1

1 - p _-- +... _0 + (49)

2r 0

(continued)
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TABLE 4 *

Observation Requirements for Preliminary Orbit Determination

Observational Data Assumption Method

Three 3°dimensional fixes None Herriek-Gibbs or Gibbs (with or
without differential correction to

reduce residuals and/or discard
bad data)

Overdetermined system with
more than three fixes

Random error
distribution

Least-square differential cor-
rection of initial orbit

Fifteen range measurements

Eight range measurements

Four range measurements

Low eccentricity Gibbs
circular orbit

rectilinear Gibbs

parabola
Gibbs

One 1-dimensional fix (can be
achieved in several ways: one

vector measurement of range
and range rate; three range
and three range-rate meas-
urements)

None Laplace o Lagrange

Two 3-dimensional fixes None Gauss (and variants)

Azimuth, elevation (c_, _ ) None Laplaeian

Azimuth, elevation rate (c_, i)

Azimuth, elevation change of

rate (5, _') all at one time

Three
elevation} for three times

Three azimuth

(That is, each _i - _i pair is

taken at three separate times)

None Convert to o, _, &, i, b_, "4 of
middle data (Laplacian)

Retain _,

Lagrange with Herriek-Gibbs

velocity

Gauss

Gibbs expansion method

None Differential correction of pseudo-

Laplac ian
Three range measurements

Three range-rate measure-
rt]ents

Differential correction of pseudo-

Six range measurements None Laplacian

Six range-rate measurements None Probably only differential correction

Other combinations of six None Needs to be developed

observed quantities for three
or more times

Five observed quantities for Parabolic or one- Modified Olbers
one or two times condition orbits Laplacian or similar method

Four observed quantities: Circular or two- Standard circular orbit methods

for example, a, c, &, _ for condition orbits:
one time; 2_, 2_ for two for example, two
times ranges or two r' s

are assumed

Four ranges for four times

Two ranges, two range rates
for two times

a, _, range, range rate for
one time

Three observed quantities

Two observed quantities

Three -condition
orbit

Four-condition

orbit

Needs to be developed

Needs to be developed

*Adapted from Ref. 3
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I (t - t0)2 I dr+ (t - tO) 1- U 6r- 3- + " " " _t- 0
O

(49)

ms _o + _ ro

From Eq (49), if the position vector r_0 and the

velocity vector F; are known for some time to,

and if the series s and econverge, the radius

vector at any time,_(t), is determined. But the

radius vector r is related to the observations by

sisting of two angular coordinates and the cor:

time, are sufficient to determine _0responding

and _0 at some time t O (generally the middle of

the three observations), except when _x _ • _ = 0

at t = to, or if _ = 0 at t = t O•

A convenient computation method for determina-

tion of the preliminary orbit of an earth satellite

from three observations of right ascension and
declination,

t : A D
a a a

?--_+h" (50) to: AO DO

where

P

A

P

r .,

PP

= vector position of the observer

= magnitude of the observation
vector

= unit vector in the direction of

observation

(51)

Successive differentiation of Eq (50) gives

• ,. ,.

The acceleration as given by dynamics (Eq (47))
can then be equated to that given by the geometry

{Eq (5 1))

. .. .., + ff (5 2)

r

The dot product of this equation with (_ x _)

gives

A A

3
r

Dotting Eq (50) into itself provides the additional
relation

2 2 R 2r = O ÷ + 2 (_" R) 0 (54)

If only direction data comprise the observations,
p and r are the only unknowns in Eqs (53) and

(54). Each of the vector products can be evaluated
from the observations and the known position of

the observer. Three observations, each con-

tb: A b D b,

proceeds as follows• Four equations in the four

unknowns Sa, Sb, °a and _b are obtained

ra = Sar 0 +Oar; =s a (POLO + 1:1'0)+O-ar'-;

A

= Pa Pa + Ra

Sb;0+%4 =Sb(00&+ °br0

^ &= 0bp b +

where

A /_ A

0i =cos A i cos Dii+ sin A i cos DiJ

A
+sin D.k

I

The dot products of these equations with unit

vectors A and D,

A

A
A A

= -sin Ai +cos Aj

(in the direction of

increasing right as-
cension)

A A A

= -sin D cos Ai - sin D sin Aj +cos Dk

(in the direction of increasing declina-
tion)

A .4

i

give the following equations to be solved:

A A _ A A

si (_0 " Ai) P0 + _i At " r0 = -st (R0 " At) + Ri " Ai

si(_o _ Bi" = o" Di) +Ri' Di• Di) P0 + ei r 0 -s i (R A _(55)A

(55)
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where

i=a, b

2. Method of Gauss

If three position vectors, r 1, r 2 and r" 3 at

times tl, t 2 and t 3, are eoplanar, and if_ 1 is

not parallel or anti-parallel to r' 3 ,

_2 =clr'l +c3r3"

With the notation of the previous subsection

_'i = Pi_i + Ri' i = 1, 2, 3.

(56)

These two equations give,

el O1 - P2 +c3 P'3 =- el Ill +R2 -c3 R3"

Also, from Eq (56),

r_l xi: 2 = c 3 _-1x?3

(57)

_2 x_3 = el F1 x_3 '

so that

r 2 x_3 " k" Area AOP2P 3

Cl=- V =
r 1 x r_3 • k' Area _OP1P 3

£] x F 2 • k Area AOP1P 2

e 3 = =
-1"1 x r 3 • k_ Area AOP1P 3

P3

O P2

rl _Pl

The c' s are known as "triangle ratios" "Sector-

triangle ratios" can then be defined as

area of sector OP2P 3

q l - area of triangle OP2P 3

area of sector OPlP 3

n2 = area of triangle OPlP 3

area of sector OPlP 2

q3 = area of triangle OPlP 2

By Kepler's law of areas, the areas of the
sectors are proportional to the time. Therefore,

t3 - t2 n2 (58)

el - t3 -_-1 ql

t2 - tl r12 (59)

e3 - t3 - tl _3

Additional conditions are imposed by Kepler' s

equation,

LZ-,1

_a (tj - t i) = Ej i 3 t- E - e (sin E - sin E.)

(a dynamic condition)
(60)

where

E = eccentric anomaly

e = eccentricity of orbit

a = semimajor axis of orbit

= gravitational constant

and

+ r. = 2a - ae (cos E i +cos Ej)ri ]

(a geometric condition).

(61)

Defining 2E.. = E. - E. as the change in eccentric
tj j t

anomaly and 20.. = O. - O. as the change in true
tJ J 1

anomaly, the last equation gives

+ r. = 2a sin 2 E.. + 2_t r cos 0. cos Eri j tj j tj ij

(62)

and Kepler's equation becomes

ti) = 2Eij - sin2 Eij

2

+a _t rj cos 0ij sin Etj. (63)

The following definitions will prove convenient.

k 2 - 4r. r. cos 2 O..
t j tj

r.+r.

1 +2_ t __
R-

m2 = k-_u (tj - ti)2

E, .

x =-sin 2 -_-.

Solution of Eq (62) for a gives

(64)

k (r i + rj)
2a sin 2 E.. = - k cos E..

tJ k tJ

or

k (i + x) (65)
a = . 2

sm E..
tj

Substitution of this a, obtained from geometrical

constraints, tntoKepler's equation, Eq (63),

gives

6(tj - t t) = (2Etj - sin 2Eta) a 3/2

+ 2 r3 cosoij sin t,:ij
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or

(tj - t i) - . 3
sm E•

13

+k 3/2 (_ +x) 1/2

With the definitions

2
_+x= m

'1

2Eij- si. 2Eij [k(,+ x)]3/2

=mk 3/2

2 E.. - sin 2 E..
X (x) - tj tj

• 3
sin E..

ij

this equation reduces to

3
m -- = m"3" X (x) + m
Y

(66)

(67)

or

2
m

rl = 1 + _ X (x)
13

Differentiation of the above definition of X (x)

with respect to Eij gives

sin 3 E.. dX - - 3 sin 2 E.. cos E.. X
tj _ l 3 tj

tj

+ 4 sin 2 E..
t3

Then

dE. ,

dX dX
tj

4 - 3 cos E.. X
= tj 1

sin E.. 1
tJ 2r sin Eij

Then expanding X (x) in series gives

X (x) = _ A i xi

i =0

whe re

dX = >, i-1Ai =_2i + 4 A(i_l) from _ __iA't x

4
From Eq (66), A 0 =_. Therefore,

4 4 6 4 6
X(x)=_+_ • _ x+g 5

8 2
7 x

-1- o,e

(68)

The solution for a preliminary orbit by Gauss'
method then proceeds as follows:

(l) Select approximate values for Pl'
4

p3, X = _ ' q2 = n3 = 1, these values

(2)

to be improved by iteration. Take

t 3 - t 2 t 2 - t 1

c 1 = _ and c 3 - t3 F1 .

,%

Determine r 1 and r 3 from _i = Pi Pi

+ ___ and determine 81, 03 and k from

Eq (64).

_2 = C l _1 - c3_3

_2--_2-_2

(3) Determine m from t 1, t 2 and k by Eq

m2X2

(64). Revise q2 = 1 + 2- (iteration
loop)• q 2

(4) Derive _ from r 1, r 2 and k by Eq (64).

2

Derive x from x = (_) - _. Revise

X from Eq (68) (iteration loop). From

x obtain 0j, -0.1 and a from Eqs (64) and

(65). From Eij and 0 i, 0jdetermine _.

(5) Repeat (1) to (4) with Pl' P2 to get q3'
X 3 •

(6) Repeat (1) to (4) with P2" P3 to get ql'

X 1 •

(7) Obtain improved values for c 1 and c 3

from Eqs (58) and (59).

(8) Obtain improved values of Pl and P2

from Eq (57). Note that this is ac-
complished by dotting in turn by

_2 x _3 and _1 x _2" The values of Pl

+ P2 are then obtained from the follow-

ing equations.

Cl (_1 " _2 x _3 ) Pl = - Cl (R1 " _2 x 23 )

+ (R2 " _2 x _3)

- °3 (_3" _2x_3)

c3 (_I " Ap2 x _3 ) P3 =- Cl (R1 " _1 x _2 )

+ (k'2 " _l x 92)

- c3 (R3" ffl x _x2)

(9) Repeat (1) through (8) with improved

values of Pl' P3' until iteration con-
verges.

3. Gibbs' Modification of Gauss' Method

There is an alternative method of solution for

c 1 and c 3 inGauss' Method due to Gibbs. If
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T 1 = _- (t3 - t2)

T 2 = _ (t3 - t I)

T 3 = _- (t 2 - tl) ,

q --%- _, T3+_2%2_ _3T3_+_4T34-

e2=_0

_3 =t0 +_1 T1 +_'2 T12 +_3 T13 +_4 T14 +.,.

d2_,

Determination of L from these series, set-
dt 2--

ring

d2r,
t

dt '2"- =-P ----_'r

elimination of the _ s and substitution in

_2 = Cl r'l + c3 _3

gives

c 1 = m

1 + B1/rl3

1 - B 2/r23

1 + B3/r32

c 2 = n r2 31 - B21
(69)

Here

T22

B 1 = (mn + n-m) _

2
T 2

B 2 = (ran + 1) ---I2-

2
T 2

B 3 = (mn - n+m) ---Y2

where

m +n = 1 and n =T3/T2,_ m = T1/T 2_

4. Method of Olbers

The method of Olbers is a technique for de-

termining preliminary parabolic orbits. As _n

Eq (57),

e1a,-_2 +c333 =- Cl 31 + R_

- e3 R'3 -=",Y (70)

The dot product of this equation and (P2

with _ and --where _ is coplanar^ P2'

P2
ff--_2 x_x v

is

x_)

Cl Pl (_2 " _2 x U) +c 3 P3 (_3 " /$2 xt._) = 0

(71)

Then

P3 = MPl (72)

where

M -- -

Ca (33" _2x if)
(73)

The computation then proceeds as follows:

(1) Select initial approximate values for

Pl and for e 1 and e 3 such that

c 3 t 3

c I t 1

Obtain P3 from Eq (72).

(2) Obtain _1' e2 and P2 from Pl" P3 and

c 3 by Eq (70).

(3) Obtain F_3 and S = I_2 - T 1 I from

the law of cosines

(4)

(5)

(6)

(7)

S 2 = + - 2rlr 2rl 2 r22 cos (02 - 01).

Obtain

2_/'_ (t 2 - t 1)
X-

(r 1 + r2 ) 3/2

Correct Pl in step (1) by iteration until

(r 1 +r 3) X Y =S (74)

where X Y is the term in Euler's

equation,

6 _ (tj - t i)
= (1 +X y)3/2

(r i + rj) 3[2

± (1 - X y)3[2 = 3 X (75)

Obtainol, _2' _3 from _2 =c1_1

T- cd2 and the sector to triangle area

ratios defining the 11' s.

Determine e 1 and e 3 from Eqs (58)

and (59) and iterate until they agree

with step (1).
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(8) From the corrected values of c 1 and

c 2 calculate _2 and compare with the

observed P2" This checks the assum-

tion of Olbers' method that e = 1.

E. THEORY OF OBSERVATION ERROR

After a preliminary orbit has been determined
as described in Section D, the elements thus de-

termined, together with a theory of motion, may
be used to calculate theoretical positions of the

orbiting body at any time. If further observations

of the body are then made, the observed positions
will be found to deviate from the theoretical po-

sitions for the corresponding times. The dif-

ferences in observed and computed positions, or

residuals, may be attributed to three causes:

(1) Approximations invoived in the theory.

(2) Inaccuracies in the preliminary orbit

elements.

(3) Errors in th_ observations.

In the problem of orbit improvement, to be con-
sidered in Section F, these residuals between

observed and computed positions are used to ira-

prove the accuracy of the preliminary orbit ele-
ments. Since the methods of orbit improvement

are rather complex in themselves , some benefit

may be derived from a review, preparatory to
considering these methods in Section F, of those
areas of statistics and numerical analysis which

are basic to the orbit improvement theories.

1. Data Errors

Data errors are of three types: systematic

errors, which affect all measurements alike;

mistakes, generally large errors due to earelesls

reading of indicators or incorrect recording,

which do not follow any law, and accidental

errors, causes of which are unknown and inde-
terminate, and which are usually relatively

small and follow the laws of probability. Syste-
matic errors can be corrected to some extent by

calibration of instruments, and large mistakes

can be eliminated from data by use of an appropri-

ate data rejection philosophy. The mathematical

theory of errors to be discussed applies only to
accidental errors, and only these errors will be

considered in the analyses.

All kinds of accidental errors may be de-

scribed by frequency distributions, or probability

density functions, curves which give the relative

frequency of occurrence of the various values in

a set of observations. By far the most useful

frequency distribution is the normal or Gaussian

distribution,

1 exp _ - 1 21f(x)- _ _ (x-_) (76)

which is found to describe most random or acci-

dental data errors. A special usefulness of the

normal distribution is also indicated by the math-

ematical theory as expressed in the central-limit
theorem of statistics:

2
"If a population has a finite variance
and mean p, then the distribution of the

sample mean approaehes2the normal dis-
o--

tributton with variance -- and mean U as
n

the sample size n increases. "

It is interesting that, regardless of the form of

the population distribution function, the sample
mean will be approximately normally distributed

for large samples.

The parameters of the distribution, as pre-
2

viously indicated, are tile variance a and the

meanp. Sometimes, however, other parameters

are employed:

modulus of precision = h -

/r
probable error = 0. 6745_ (normal distri-
bution only)

In practice, since the actual parameters cr and

of the theoretical population distribution are not

known, they must be estimated from the avail-

able data. Statistical analysis shows that the

maximum-likelihood estimates of these param-
eters for the normal distribution, are

n

12= -ff x i = x- (77)

i=l

n

^2 1 2= n ( xi _ _)2 (78)

i=1

where n is the total number of data, x i, in a
sample.

The significance of the distribution function

is further indicated by noting that the area under
the function contained between two arbitrary

limits, x I and x2, is the probability that a given

observation wii1 lie betweenx 1 and x2, i.e.,

x 2

Pr°bability IXl _-x<x; =S f(x) dx

x 1

x 2 1 (x - p)2

_ 1 _" e -_ dx (79)

2_0 Xl

Viewed from this aspect, the parameters of the
normal distribution can be interpreted as follows:

= data value corresponding to the maxi-
mum value of the frequency distribution

a = a span of x such that 68.26% of the area
under the distribution curve is con-

tained between the limits _-cr and /_+¢L

_-ry p N+a
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Probabilitydistributionsfor severalvariables
(multivariatedistributions)maybedefinedin a
similar manner,i.e.,

Probabilityix1<x <x2, Yl <Y <Y2]

x2 Y2

Xl Yl
f (x, y) dydx (80)

wheref (x, y) is calledthejointdensityfunction
for x andy. Inparticular, thebivariatenormal
distribut[onis

f (x, y) = l exp
2Tr_xCry_/{_ p2

_ ,

- /
(81)

which represents a bell-shaped surface over the

x-y plane. The parameter p is called the cor-

relation between x and y. When the correlation
is zero, f (x, y) becomes the product of two
univariate distributions

f (x,y) = gl (x) g2 (y)

and the variates are said to be independently dis-
tributed. It is sometimes convenient to write
Eq (81) in matrix notation:

1
f (x 1, x 2) - exp

2 2

- _ (x i - (xj -
i=l j=l

(82)

where

Icrijl =determinate of the matrix Iaij]

Ill _121= = the variance-co-

[oij] 6°21 _22J variance matrix

2 2

°11 =or x and cr22 = Cry

crl2 =cr21 = covariances

FcT22 Crl2_q

I-cr21 _111

The extension to the

tribution is obvious:
general multivariate dis-

k

f (x 1, x 2 .... Xk) =

exp

f 1 " •

crtJ (x i - U i) (xj - Uj (83)

i=1 j=l

Error analysis frequently requires consid-

eration not only of random errors in measure-
ments, but of errors in functions of the measure-

ments. That is, the quantity sought is some

known function of several measured quantities.

Of particular interest is the function consisting
of a linear combination of random variables. If

x 1, x 2, ... x k are independently and normally

distributed random variables with means u and
2

variances cr. , and if
t

k

u = L a i x i, (84)

i=l

where the a. are arbitrary constants then u ts
I w

normally distributed with mean

k

Pu = _ ai Ui

i=l
(85)

and variance

k

Z(3 u =

i=l

2 2
a. 0".

1. 1.
(86)

This case is of special interest because, even

if the function of interest, u, is nonlinear, the

errors in u, :u, can usually be accurately ap-

proximated by first-order differentials, i.e.,

8u Ax 1 + Ou
Au = Xi_l x_-_2 AK2 + ...

8 u Ax k

which can then be treated as Eq (84).
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2. The Method of Least Squares

The method of least squares is a method of

finding the best possible values for a set of m

unknowns, x 1, x 2 ..... Xm, satisfying n linear

equations, where n >m.

all Xl +a12 x2 + "'' + alm Xm = Yl

a21 Xl +a22 x2 + "'" + a2m Xm = Y2

anl Xl + an2 x2 + "'" +anm Xm = Yn

Since the number of equations exceeds the num-

ber of unknowns, and since the Yi may contain

observation errors, the system of equations is

not solvable exactly, i.e., there is no set x 1,

x 2 .... x m for which each of the n equations is

exactly satisfied. Each equation then has a
residual of the form

6i = Yi - at1 Xl - ai2 x2 - "'" - aim Xm"

(i = 1, 2, n) (87)

The least squares technique attempts to find

values for x I, x2, ... Xm which will make

n

6. 2 as small as possible. This is the cri-1

i=l
teflon for "best" solutions in the least squares

method. If sucha set ofx. exists, it then sat-
t

tsfies the condition

n

8 _ 6.2=0

i=l

n

8 _ $[ 2 = 0,

_O-ff2 i= 1

n

a _" 6.2=0

n i= 1

This differentiation results in the following m

equations

n n

xIL ail all +x2 _

[=1 i=l

at I ai2 +

(continued)

x 1

n

:Z
i=l

n

+ Xm Z at 1 aim

i=l

ail Yi

n n

_, ai2ail +x2 _

i=l i=J

ai2 ai2 + ...

n n

+XmZ ai2aim = L ai2Yi'"

i=l i=l

n n

_ aimail+X2 _ aimai2 +---

i=l i=l

n n

+Xm _ aim aim = I aim Yi

i=l i=l /

(88)

These equations comprise a system of m linear

equations in the m unknowns x 1, x 2 ... x m, which

may be solved in a routine manner, e. g., by

Cramer's rule. These equations are called the

normal equations and are sometimes written in

the following shorthand form:

Xl+ [aIa2]x2+...

+ [a I am] Xm : [alY ]

[al a2] x I + [a2a2] x2+''"

+ am]Xm
... °..

(89)

[al am] x 1 + [a 2 am] x 2 +...

+ [amam] Xm = [amq

These equations apply in the case in which the

equations of condition, Eq (87), are of equal
weight, i.e., all observations are assumed to

be made with the same precision. If this is not

true, then each of the residuals 5. must be
i
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assigned an estimated weight Pi,and each equation

of condition multiplied by the square root of its

weight. Then the normal equations become

n

_ [Pi ai1(Xl all + x2 at2+''"

i--I

+ x a. - Yi )]3 = 0In I m

n

ai2(xiail
i=1

+ x 2 at2 + •..

+ x m aim - yi )] = 0 (90)

n

T [pi (xi +x2L_ aim all ai2 + •..

i=l

+ x m alm - yi )] = 0

The weights normally utilized in these equations

are inversely proportional to the variances, i.e.,

2

Pi 2 ' (91)

i

where _.2 is the variance corresponding to weight
1

Pi and _2 is the variance corresponding to unity

weight.

Use of the least squares method is not strictly
limited to sets of linear equations. The method

can be applied directly in the case of certain

functions of an exponential type, but the usual

procedure adopted in dealing with sets of non-

linear equations is to replace the functions by

linear Taylor series approximations. Let the
n observations _. be related to n nonlinear

i

functions of the unknowns to be determined, i.e. ,

fi (Xl' x2 ..... Xm) = ai - 6i

i = 1, 2, ..., n, n > m

where the x. are the unknowns to be determined
3

and the 6. are the residuals, or errors in thei

observations. The desired solutions may be

represented by sums of approximate solutions,

(Xl)0 , (x2} o ..... (Xm)0, and corrections to

these approximate solutions,

xj -- (xi) 0 + Ax..]

Then expansion of the fi in Taylor series gives

af.

fi [(Xl) O' (x2) 0 ..... (Xm)o]+ _ 0
AX 1

0f. I Oft 0AXm
+ ---2- -1 Ax 2 + +

O x 2 ' " "
0

= _i- 6i' Lx--T-2 _ 0
3

(92)

On setting

fi E(Xj)o] yi

Of.

___j_l ] a aij ,

8 xj ]0

Eq (92) corresponds to Eq (87), the linear equa-
tions of condition, and may therefore be solved
for the "best" vaiues of the x. in the manner out-

J
lined previously.

For the present purposes, it is convenient to

formulate the weighted least squares estimate in

matrix notation. Consider the equations of con-
dition, Eq (87)

6i = Yi

m

- _ a..x.,
_3 3

j=l

the weighted least squares condition is that

2

-- - a i_ x
i=l c_i2 j_-_

be minimum. If the (_i 2 do not vary significantly

with xj, setting the m derivatives

2

0 0
8 xj

gives the following normal equations,
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i=l j=l

k = i, 2, ... m

aik = 0

or

_ aik Yi- . V aij
i=l ai j=l

In matrix notation, with

X. =0

J

2

a 0 0 ... 0

io ,,_-_o ...o
-2

e3 0

! •
i

_0 0 0 ... o£

the normal equations become

n m n

/_ [v a] ik Yi- _ (____ rva]ik aij)

i=l j=l i=l

X. _ 0

3

since

n n

_=! _=I

6i_ a_k

where 6i_ is the Kronecker delta and is equal to

I (i = _) or 0 (i _ _). Thus, Iv a] ik ai-2= aik.

But

n n

Ev.,ik,i-  v.,t t)ki Yi a] k

i =I i=l

and

m h

j=l i=l

X. --"

J

j=l i=l

Ira] t
ki aij)

X.

J

(continued)

m

= _ ( Ira] ta) kj

j=l

X.

J

-lEv.lt-xfk.
Therefore, the normal equations may be written

t:)kI 'a)xIk'O
k = 1, 2 ..... m

or

tva ty(Cv. t x'O
Finally, the explicit solution for the m-vector of
unknowns is

[Iv at t al -1 Iv a] t l y }{x} =

or

lxf= [at va]-i [a] t [v] {y}

(93)

where

a = n x m matrix of the a..
ij

v = n x n diagonal matrix of the inverse
variances

y = n-vector of known data

Several examples of the application of the method

of least squares are given in the following sections

for the cases of equiweighted data.

a. Least squares fit of a straight line

The sum of the squared residuals to be mini-

mized in fitting a straight line by the least squares

technique is

n n

i:l i=l

n

(yi'
i=l

2
+ IYI

2 m x i Yi - 2 ky i + 2 km x i

2
x. + k 2)

1

which is quadratic in k, i.e. ,

n

_" 6i2 = n + 2 k (m
.... k 2

i=l

n 11

i=l i=l
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whereCcontainsall termsnotinvolvingk.
The minimum occurs for

k 6i = 2 nk + 2 m /, x i - Yi

i:l i= ] i:l

or

n n

my
2_ ¸ --.w

i=l i=l

x.+nk
1

Similarly, the quadratic in m gives

n n n

---_ 2-_ 1

i=l i=l i=l

(94)

(95)

Exalnple: Consider a plot of the inverse of the
nondimel_sional acceleration versus time. Then

= 1 =_g__

Isp -_, x i = time points, Yi a t

= 0

From the raw data or specific impulse of an
2

engine in the table, compute x, y, xy and x .

Raw Data for Specific Impulse of an Engine

2
x

IL :5 0. 17-1}/ {I. 037 _ 0. 25

1. II (1, I73l O. 173[ l. O0

l. 5 0, 17 I 5 I). 25725 2, '25

2. 0 0, 14i!_7 0. [11_14 4, 011

2. 5 0, 1_180 0, -1200 fL 25

.1, 0 IL lt{ti { 0. 4!!89 9. O0

3, 5 0, 1fi45 0, 57575 12. 25

L 11 rl 1t;27 O. 6508 [tL O0

t, 5 fL [1108 I]. 723(; 2[]. 27)

5, 0 0. [:51)f) 0. 7950 25. t)O

"_. 5 [t, 1571 (t, 86405 30, 25

g. 0 0. 1553 0. !1318 3C. 00

!,. 5 IL 1%3_ 0. qr q05 'i2. 27,

7. 0 0. 152l 1. I)_i47 4_, IJr)

7, 5 {h 1504 1. 121¢0 5(;. 25

_. (i II. [484 1. 1872 64. [)0

}l, 5 (L 1463 1. 24355 7'2. 25

!L l) O. 144-t 1. 2fl96 I11. 00

!!. 5 0. 142f; t. 3547 90. 25

(ill) s¢'_) 1!). {I 0. 141)[_ _ 1. 4090 100. 00
" 9 -

Ex=tQS.{) E_ = 3.3581 LX2, = 16.00285 Ex-=717.501129lo 1:10 st'c)

Then, from

Ey = m Ex + n k

Exy = m Ex 2 + k Ex,

a. 3381 = 105 m + 21 k
16. 00285 = 717.5 m+ 105 k

Simultaneous solution of these equations gives

m = - 0. 003572207

I = 279. 938 see from 120 to 130 see.
sp

b. Least squares fit of an ellipse

A determination of the "best" elements of an

ellipse from application of the least squares

criterion to q sets of data (r, A, L, t),

r = radius vector

A = right ascension

L = declination (geocentric latitude)

t = time

may be based upon q sets of equations of the form

tk = tp +a Cos-l\_)

cos A k cos L k tan i sin _2

- cos L k sin A k tan i cos _ (97)

L + sin L k = 0

where

k = 1, 2, ..., q, q> 3.

Approximate values of the elements are assumed

known. These rough values will be designated

a0, e0, tp0. Then corrections 6a 0, 6e 0, 6tp0

must be computed such that

a = a 0 + 6a 0

e = e 0 + 6e 0 (98)

tp = tp0 + 6tp0

(tp = time of perigee encounter)

are the elements that best satisfy Eq (96). Equa-

tion (96) can be written in residual form as fol-

lows:
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r.

6 k = tp0 + 6tp0 - t k+ (a 0 + 5a 0) L_-(a 0

,]I12 [+ 6a 0 cos -1 (a 0+ 6a 0 - r k) (a 0 e 0

+ e 0 6a 0+a 0 6e 0+ 6a 0 5e0 )-1

+-_(e0+ 5e0)2- ( 1 ° a 0rkT 5a0)_2 1

This equation may be linearized in terms of the

corrections by means of Taylor's expansion,

at k at k at k

5 k = 6a 0 _g- + 6e _ + 6tp _- + tp - t k
P

+a0_ [cos-1 ( a0 - rk_
(99)

]
where terms of order _6( )i2 and higher have

been neglected. This appro_/imation of the Taylor

series terms involving higher powers of the cor-

rections will not affect the accuracy of the final
solutions for which the corrections are very small,

provided that further corrections of the form

Eq (98) are applied, i.e., that the solution is ob-

tained by a convergent iteration of the form

= + 6a
an+l an n

= + 6e (I00)
en+l en n

t =t + it
Pn+l Pn Pn

Then the orbit elements which represent a least

squares fit of the (rk, t k) data can be determined

q

that > 6k2 be a minimum. Eval-by stipulating

k=l

uation of the partial derivatives of Eq (99) and

substitution in Eq (100) yields the following final

solutions for the planar elements:

an+ 1 = a n +_

-f _k ,k f _k'k f _k
k k k

-f 'k 'k Z 'k 2 f 'k

k k k

k k

(101)

en+ 1 =en+ _

k k k

_k_k-Z 'kk_ k _ _k
k k

(102)

t

Pn+l

+!
= tpn d

2 V_k :t, _k _Yk , _k

k k k

_ _k$k _ ffk2 -_ *k lk
k k k

_k ZSk -re k
k k k

(lo3)

where d =

f Ek2 _ _k*_k _ _k

k k k

Z _k_[k Z _k2 Z _k

k k k

3_ 1 _n (rk_ 2
_k = 2 (Rlk - R2k) - _ I _-- \_n/

. (anrk )*k R2k-- _n an - e

a n
= t - tk + n (Rlk - R2k)

Ok pn

Rlk = cos \ en an /

R2k = e n sin Rlk

In terms of true anomaly instead of time, the

solution is much simpler:
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'a : P,, t ÷ l_

_krk ['1, "k 2

k=l k

_,1 i _1 c:c,s "k '_k _ r k ,_,,s %k=l

" Pn It_ _k 3 c,c,s %

en * en-i +_ [ k- I I

i p ik i k-I_ , n- ! _k ]

where

p = semilatus rectum of ellipse

(104)

(105)

D =

2 39k - Pn-1 @k cos Ok

k=l k=l

3 _, 4 2@k cos Ok Pn-1 @k cos

k=l k=l

Ok

1

e k =
1 + en_ 1 cos Ok

This routine is suitable for computing ellipses_

parabolas or hyperbolas. There are no dis-

continuities since the denominator of @ k becomes

zero only for cos @k = -_le ' i.e., only for infinite

orbital radius.

The previous routines are concerned with the

computation of the elements which describe

satellite position in a plane. There remains the

problem of solving for the elements which define
the orientation of the orbital plane in space. The

equation for the orbital plane in spherical

coordinates in Eq (97). Then the q data points

can be used to write q residual equations.

P1 cos L k cos A k - P2 cos L k sin A k

+ sin L k = 6 k

The best values of the elements l_ and i are then

determined as follows

-1 P(___p_2)
_2 = tan (106)

i =tan-1 ( P1 ) (107)

where

P1 =

_

P2 =

k

cos L k sin L k cos A k

cos L k sin L k sin A k

cos 2 L k COS A k sin A k

k

cos2 L k sin 2 A k

c°s2 Lk c°s2 Ak I- _k c°s2 Lk cos A k sin A k

k

_ cos2 Lk sin Ak cos Ak _ cos2 Lk sin2 A k

k k

cos2 Lk c°s2 Ak I- _ cos L k sin L k cos A k

k k

cos 2 L k sin A k cos A k

k

cos2 L k cos 2 A k

k

cos 2 L k sin A k cos A k

k

cos L k sin L k sin A k

k

"- _k c°s2 Lk sin2c°sAkAksin A k

_ cos2 L k

k

Equations (101) through (107) may be used to

investigate the effects of number, accuracy and

spread of data points on the accuracy of compu-
tation.

These equations may be used to show the ef-

fects of spread of data over limited arcs of the

orbit by letting sets of identical data be associated

with various arc lengths. Errors due to limited

sample size are to be precluded as far as possi-
ble; therefore, each set of data was selected to
fit a normal distribution of zero mean and 1000-it

standard deviation in range and 0. 005 ° in azimuth
and elevation. The orbit selected for the first

series of computations was the circular 6-hr orbit

(r = 5. 488164 x 107 it). The results of the com-

putations are shown in Figs. 3, 4 and 5. Errors

in computed eccentricity, semiparameter, incli-

nation and nodal longitude are plotted against the

spread of equally spaced data points for sets of

four, nine and twenty-five data. For data spread

over arcs of 40 ° < are < 90 °, the iteration con-

verged very slowly and for arcs less than 40 ° the

solutions drifted. These figures provide a quali-

tative indication of the improvement of results

with spread of data over wide arcs.

As indicated in the statement of the central-

limit theorem in Section 0. 1, the failure of a

small sample of data to yield the mean of the

true population gives rise to another type of error.

The qualitative effect of this error may also be

investigated with the previously derived solutions

for least squares fit of an ellipse. Limited data

samples of 6, 10, 20, 30 and 40 points were

selected randomly from a normal population of

-- 1000 ft. For the case of Fig. 6, the data were

taken at equal intervals over two 15 ° arcs at

opposite sides of a 6-hr circular orbit. In Fig. 7
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theresultswitha limitednumberof dataare
shownfor datatakenat equalintervalsaroundtwo
sample orbits, a circular 200-stat mi or 322-km

orbit and an ellipse of e = 0. 4 and p = 3. 07425

x 107 ft or 0. 937031 x 104 kin. The errors in

computed eccentricity and semilatus rectum are

shown as functions of the number of randomly
selected data.

3. Other Methods of Parameter Estimation

Although the least squares method is most

widely used, it is not the only technique available.

Some other approaches are the minimum variance

technique, the maximum likelihood estimate and
the method of moments.

a. Minimum variance

The minimum variance estimate is that esti-

mate which has a minimum variance-covariance

matrix. When the errors are uncorrelated, i.e.,

when the eovariances are zero, the minimum

variance and weighted least squares methods are

identical. However, when the errors are corre-

lated, the minimum variance approach may be

superior because it includes the effects of the cor-

relations. That is, if one data type is highly cor-

related, the Ieast squares technique may overly
weight that data type. However, the least squares

technique is generally used because the minimum

variance computations are more complicated and

require more detailed information about the co-

variances which is frequently not available. The

improvement to be gained by use of the minimum

variance technique is not of great significance.

The basic equations of the minimum variance

approach may be developed as follows. If x t is

the true value of the unknown parameter x, and
x is its estimated value,

e

Yi = ai xt + 5i (xt)

where Yiare the observed data and 6 i (x t) are the

errors in the true unknowns, and

n

Xe = _ bi Yi"

i=l

Therefore,

n

= _ bi (a i x t + 5 i)X e /

i=l

is a random variable since x is a function of 6..
e i

The variance of Xe, from Eq (86), is

n

2 = y b.2 _.2
(IX _ 1 1

e i= 1

where

2

1
= variance of 6.

1

if the 6.'s are uncorrelated,
i

n

2= _ b.2.2+_X 1 i

e i= 1

where

If correlation exists,

n

i,j%l

i_j

b i bj Oij (108)

Pij = covariance of 6 i and 6j.

The first summation of Eq (108) comprises the

diagonal terms of the variance-eovarianee matrix,

and the second summation represents the off

diagonal terms. The minimum variance tech-

nique, as the name implies, is based on a mini-
2

zation of o x , subject to the condition that the
e

expected value of x e is x t. This minimization

results in the following minimum variance esti-
mates.

!Xet = [ at c-i a] -lat c-I tYt (109)

where

c = the nxn variance-covariance matrix

This equation is completely analogous to that for

the least squares estimate, Eq (93), and the two

estimates are obviously identical for the case of
-1

zero correlation, c = v. The variance of the

estimates in matrix notation is

la t ] - i_Xe 2 = c I a (llO)

b. Maximum likelihood

The maximum likelihood estimate is the esti-

mate which maximizes the probability distribution

of the data sample. If the errors are normally

distributed, the maximum likelihood estimate re-

duces to that obtained by the minimum variance

technique.

c. Method of moments

As an example of the method of moments, the

problem of fitting a straight line, solved in Sec-

tion D. 2. abyleast squares, is presented.

For a set of n values of (x i, yi ) the rth moment
of y is

n

n xi Yi

1

w he re

r is zero or a positive integer.

Now obtain two equations in m and k by equating

the zeroth and first moments of the observed y' s
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to the zeroth and first moments, respectively, of

the y's computed from an assumed y = mx + k line

fit. All moments are taken about the origin of x.

These two equations may then be solved for m and

k. Let oYbe observed y's and cy computed y's.

Then for observed y's the first moment is

n

i

_ xi oYi

i

and zeroth moment is

n

IT
n :, oYi "

1

Obtain computed y' s from cy = mx i + k and get
moments

n

in _ xi (mxi + k)

1

and

n

mx i + k.

1

Equating as previously indicated,

n n

2 1  mxi+k,n Yi

1 1

n n

1 _ = 1 _ [ (mxi+k)]n xi Yi n xi
1 1

Simplification of these equations gives

n n

T Y
:__ Yi m x i + nk

(111)

n n n

xiYi= m_ xi2 +k_ ri •

1 1 1

(112)

These equations are the same as Eqs (94) and (95)

in the least squares example.

Solve these for m to get

m =

n n n

1 1 1

- n
X 2

Example.

I
sp

Thus

I
sp

1
when

m

I x i = time points

Yi = g/aT (corresponding
to x points).

2

n n n

,, - " xi Yi
--F

1 1 1

When n goes from 1, 2 ..... n

n

y n(n+l)xi 2

1

n

xi 2

1

= n (n + 1) (2n + 1)

F. ORBIT IMPROVEMENT

It has been noted that the basic problem of

orbit determination is solution for the six defining

parameters of an orbit from a set of observations.

Orbit improvement, as distinguished from pre-

liminary orbit determination, assumes that ap-

proximate parameters are already known and that

these are to be improved in accuracy. The six

parameters may be the classical orbit elements

(a, e, i, w, f_ tp), or the Cartesian position and

velocity components at a specified time, or any

set of quantities which uniquely determine the
orbit. Other quantities, in addition to the six

orbit parameters, could be refined in the orbit

improvement process. For example, the accuracy

of any geophysical constants which appear in the

equations of motion (of which the six orbit param-

eters are constants of integration) may be im-

proved. Examples of these constants are drag

coefficients, the various coefficients of the gravi-

tational potential function harmonics, inaccurately

known locations of tracking stations, thrust cor-

rections, etc. The basic method of computing
corrections to these constants and orbit parameters

is known as the differential correction technique.

1. Differential Correction Technique

The equation of motion can be written, as indi-

cated in Chapter IV, as

r _ Fimd 2 r = -U--g +
dt 2 r :

i

(113)

where the F. are perturbative forces due, for ex-
1

ample, to drag, oblateness, thrust, etc. If there
were no errors in the observations or inaccuracies
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in the physical constants of Eq (i13), all data

would be exact solutions to this equation. The

six constants of integration (the orbit parameters)

involved in the solution of this equation could then

be evaluated exactly. That is, if there existed an

explicit solution for Eq (I13),

fi (Xl' x2 ..... Xm) = Yi i = i, 2 ..... n

where

Yi = the observed data

x. = the unknown orbit parameters and physi-
J cal constants

f. = some nonlinear function,
1

the m values of x. would be determined if at least
J

m values of data Yi were available. However, no

observation will be exactly correct, and so this

equation becomes

fi (Xl' x2 ..... Xm) = Yi - 5i

i = i,... n, n> m

where 5. is the error in the ith item of observed
1

information Yi" Although the functional relation-

ship expressed in this equation is very compli-

cated, simple linear approximate functions of the

corrections to the unknowns, Axi, can be written
from Taylor series

_f" Ii AX I
fi IxOl" x02 ..... X0m) + _x-1

0

j °,f l0fi Ax 2 +...+ -- Ax m

+ 5-x-_ 0 xmp 0

= Yi - 6i

or

mI0fi AX i = Ay i -%o
j=l

6 i

where x01, x02 ..... X0m are known approximate

values of xj AYi are the differences in observed

and computed or anticipated data and the corrected

values of the parameters to be determined are

xj = x0j + _xj.

This procedure is useful in the problem of orbit

improvement, where approximate values of the

parameters are assumed known from preliminary

determinations. Then, if an excess of data is

taken, n > m, the 'best" values for the corrections

can then be determined by the method of least

squares as outlined in Section E. 2 for

The normal equations corresponding to Eq (90)
are

E_ 1 1 1 =
_-i12 AYi- 8x-- _ 0

i=I j=l J

j, k = 1, 2 ..... m (114)

This process of correcting parameters which

are known approximately, is referred to as

differential correction, and is not strictly limited

to orbit improvement. In the case of launch of

an artificial satellite, for example, the nominal

trajectory parameters can be used as the initial

approximate values to be refined, The only

restriction is that the approximate values be

sufficiently accurate to validate neglecting
higher terms in the Taylor series (i.e., assure

convergence of the iteration). The results of

Section E are applicable to this method of esti-

mation of orbit parameters. In particular, the
matrix formulation for the estimated values,

from Eq (93), is

where

[a]

[v]

= [at v a]-l[a] t[v] {Ayf (115)

= nxm matrix of the partial derivative

coefficients

= nxn diagonal matrix of the inverse
vcariances

and the variances of the estimated values are,

from Eq (108) or Eq (II0)

n

_x = bi 2 a i (no correlation)

e i=l

or (116)

2 = [at a]-i
(_Xe v

2. Determination of Partial Derivatives

In the matrix [at]
the form

i=l

there are elements of

where xj and x k are parameters at initial epoch.

It is convenient, in the calculation of partials

OY i

of the form _, to separate the partial into
]

components which may be determined individ-

ually with greater ease.
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8Yi 8Ti 8X 8Yi 8Y + aYi 8Z

8Yi _i_ 8Yi 8_f 8Yi $%
+ + ---- __ + -- __

ax axj 8_f 8xj 8Z 8xj

where (X, Y, Z) and (_K, _z, Z) are the current

position and velocity components. The partials
of the observed quantities,

etc., are derivable in analytic form from the

definitions of the Yi" The derivatives

•ax ak

g_j --• axj

etc., are obtained by numerical integration.

From the equation of motion,

X = F,

d 2 a/ _ 8F aX 8F aY , aF JZ

- j J

+ aF ak +aF ax+ oF ak
oT T

Equations of this type are doubl:g integrated

numerically to give

8X 8y aZ

x_'7' x_:--' _N7
J J J

and differentiation of these partials yields

ok oV a_
_ff.' a'g77-.' ax.

J J J

3. Analytic Solutions for Partial Derivatives

Corrections in a set of orbit elements may be

related analytically to corrections in the Cartesian
coordinates. One convenient set of orbit element

corrections is d_r x, dSy, d$ z, dM 0, da, de, where

the d_' s are rotations about the Cartesian axes,

dx = zd _ty - yd *z

dy : x d*z - zd *x

dz = y d_ x - xd _y (117)

and

dM 0 = correction in mean anomaly

da = correction in semimajor axis

de = correction in eccentricity

The differentials dM0, da, de are obtained from

the equations of Keplerian motion• If _ and

are unit vectors along the x and y_ axes (the

orbit plane coordinates defined in Section B. )

= a (cos E - e) _ + a_----_e sine _ (118)

d_ _ [(co!___E - e) da + a (-sin E dE - de)]

+ '[_1 e 2 (sine da + a cos E dE)

E e_de ]- a sin _ _ (119)

The nomenclature is that of Chapter III.

But, from Kepler,s equation,

E - e sin E = M 0 + _1_-/2 (t- tO) ,

a

dE - ar L[sin E de + dM 0

- T /2 (t-t0)--
a

(120)

Substitution of this equation in Eq (1 19) and noting
that

2 r
sinE= -

- [_ {, ]v = _1 a sin E + a - e 2 cos E
r

(121)

gives

dx = + m
Ol tO a

1 x- n--_- sinE de + _----_---- dM 0
n

dy
t0

-- ,+ m
1-e

Y

+ _ dM 0 (122)

de

where

n:a 
,.3 £ (t - to).m -- - _F

a

(123)

(124)
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It is desirable to write the eccentricity sensiti-

vities in the form
Evaluation for each term of Eq (128) proceeds as

follows.

_X
= Hx+ Kx, x-,y, z.

ae

Solving the simultaneous equations

I_e mSx°_

= Hx +K_= Hy + Ks;u_

gives

8x ° 8yto

H =
x )_o - Y_ _

8y 8x

x_-_ - y_ _-_
K-

x 5_ - y :_W _

Ox 0y

Substituting for e_ and e_ from Eq (122) and for

x_, y , _ , _r0 from Eqs (118) and {121) gives

1
H = (cos E + e) (125)

---2
1-e

K - 1 sin E 2
n 1 - e 2 (2 - e - e cos E). (126)

Then the final form of the differential correction

equation is

IilL0: ildx 0 z -y K Hx+ K K x+ m - de x ]

dy = z 0 x Hy+K y+m d_y

d -x 0 i Hz+K _ |K K z+m dCz

!

dM0|

d__a
- a

(127)

where m, n, H and K are given by Eqs (123)

through (126). This equation is due to Eckert
and Brouwer, Ref (5). In vector notation,

- (d_ r)dr = x +v
dM 0 + (Hr + KV) de

v da (128)+(7 + m n)7-.

Eq (127) can be transformed to the satellite oriented

system (X s, Ys' Zs) by

dx = dr •
S

dy s = dr -

dz dr A= • m.
S

(di_%) _ : d_. (rx_):o
(d_ xr) . _ = d_- (r x_) = d_" r_m = rd_ro

(d_x ;) • Am = d_. (r x Am)-- d;- (-r_)

If £4 " d*p9 + d*q Q + des s_.

(d_ x r) . _ = rd_ s

A A

(d_ xr) - _ = - rdq_p p.n-d_qr q.n

- dqJp b sin E - d_q a (cos E - e)

Also

V

V 2
^ r a

. r = - e sin E
n r

v I, 1 = a 2 2
- e

. n n r r

v ._= o

- 2
v a estnE

(Hr + K -fi- ) " _ = r H+K r

V a -e
(H + K-h- } " nA -- K--_

V A

(Hr + K_-) • m - 0

Then Eq (127) can be written

where

I:l °o , ....
, i I

bsin}: - a (cos E - e) t 0 {{3 10 I 0

2

B - a e sin E
r

2; 2a - e
C - r

"d4p]

d4q

d_s ]

a

(129)
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and H, K, and m are defined by Eqs (124) through

(126). The transformations f-om the rotational

element corrections (the d_,s) to the classical

element corrections proceed from a consideration

of the accompanying sketch. From a projection

of all vectors on the nodal line,

dt = d_p cos t_ - d_q sin _ . (1305

k

d_ d_q

t_ dqjp

dt

3

From a projection of all vectors on the line

perpendicular to the nodal line in the orbit

plane,

dr2 sin i = d_q cos _ + dCp sinw • (131)

From a projection of all vectors on the normal

to the orbit plane.

d¢o + dr? cos t = d_s. (132)

Eq (1295 can be transformed to topoeentric

coordinates by means of the transformations of
Section B. 2.

l} {}dr 0 = T 0 T _ T_I T (t0+85 dr s (1335

where T_0 symbolizes the transformation from ECI

to topoeentric coordinates.

The final step in formulating the differential

correction equations is the transformation to

the differentials in the data• For example, from

Eqs (42 or (455.

I I {}dm -- TI JO

n

(134)

or

I do t;o}cos c d = T r d

h d_

(135)

If Doppler data are available, the Eckert

Brouwer equations must be modified, as indicat-
ed in Ref. (6).

The orbit velocity ts

1 (-sinE _ + 1-¢i-2-_2cos ^= E q).v 1- e cos E

Since

dE = ar [sin E de + dM 0

.3 da
2 "---_/2 (t - t0)--_-- 1,

a

dv = _ (- _
2-"--a mx ) da(l)

r

-_ a 3/2 x dM 0
ul

r

a3/2 sinE {cos E
r

a (cos E-e)} de]+ --r-

+ _ (-Y_ - )da
m y

r

3/2- a y_ d M 0
r

. ¢,7r (_'_ Vl- e2 sin2 E

a eeosE de]

Then, after a procedure similar to the derivation

of {d_s}, the result, analogous to Eq (129) is

obtained. For example,

(_)2r" _" ; #

r

a3/2- .- r n = 0

r

- a 3/2 r. n_ = 0

r

v , _ = I-
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- m . _ =
-_- r

v m " _ =
- r

Finally,

-Iy 0 a 3

I:l-
0 0 g3

1 "2 0

a 4 a 5

0 s5

0 0

where

 ii" o">

a_l d_p
6 d_qed_ s

dM 0 + d_

de

da

--g--

(136)

_3 r
1+

a6 = _ ra - sin E + m -_--1

a
=_-_-- sin E

fi3 v a r

_5 =' _r cosE

_6 -I/2 a _ _ (1 --e 2)
= _ a

Y1 = _--_ - -_e2 c°sE

= _'a sine
72 r

The velocity of interest is not the total velocity

but the component of relative velocity along the

line vf sight. If R is the position vector of the

observer in geocentric equatorial inertial

coordinates (x, y, z) and _ is the position vector

of the satellite in topocentrtc coordinates,

Z

_e

/
X

:atellite

_Y0 Y

Differentiating,

_--_- + +_eX_

where d__ _s the velocity of the satellite
dt

relative to the observer and _e is the angular

velocity of the earth's rotation, or

dp" v" x r
_ = " _e

The Doppler shift being measured is

dp dF = _ (_" " _e= P" dt "

where _ is the unit vector along the line of sight.

Then, considering variations due to changes in

the orbit elements only,

s = _'.(6_-_eX 6;)

+(_-a e x _). 6 j

Since 6R = 0 (i. e., the observer's position

ts not a function of the orbit elements) and

6p -- 6_'. _,

dp
_._,_. - 6r •{ } { } x ;1e - _-

\dr " p

. {,;}. #)
where 6 _ and 6 _, as previously given, are the

differential correction expressions involving the
corrections in the elements.
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G. ACCURACYOFDETERMINATIONS

1. Sources of Error

The accuracy of an orbit determination de-

pends on not only the precision of the measure-

ments but on knowledge of the errors and how

the errors can be eliminated. Errors are broadly

divided into two classes: systematic and random.
Random errors can be minimized if the statistical

properties of the noise spectrum are known; sys-

tematic errors, if known, can be removed by

various techniques such as calibrations against
known standards.

Systematic errors. Systematic errors are
errors which occur in the measurements (sensors),

the station location (geodetic), and the description

of the orbit (simulation). Equipment sensor

biases may be due to refraction effects in the

measurement of angles, mechanical misalign-

ment of the electrical axis with the geometrical

axis of a parabolic reflector antenna {boresighting),
drift of d-c reference voltages, surveying errors

of true north or of the local horizon plane in the

measurement of azimuth and elevation, error in

the adopted value for the velocity of light, back-
lash in the servo gears which move the antenna,

and sag in the antenna at different attitudes.

Range measurements, assuming a monopulse

radar, can have systematic delays in propagation,

false signals due to reflections, timing errors

and gating errors. Some of these errors are re-

moved by using a beacon on board the satellite

which changes the frequency of the return with

a known delay.

Range rate errors, using a doppler technique,

can acquire systematic errors due to variable

ion densities which change the frequency of the

carrier to give spurious doppler effects. If a

transponder is used on board, there could be

small systematic retransmission errors. If the

station location is not well known, there will be

systematic errors for example due to errors in

the calculated velocity of the station about the
earth' s axis.

Other geodetic uncertainties, such as in the

figure of the earth, gravity anomalies, and

representation of the potential function may con-

tribute to significant errors in orbit determination.

The degree of completeness of the simulation

model, for example the inclusion of nongravitational

losses (radiation pressure, atmospheric drag

fluctuations, etc. ) and perturbations due to, say,

other planets or other bodies, will contribute to
errors.

Noise. Some of the sources of noise which

deg_servational data are atmospheric,

cosmic, man-made, and thermal. Atmospheric

noise is due mostly to electrical storms and

varies widely throughout the year. Cosmic noise

comes from the center of the galactic plane, the

sun, and from a certain number of "radio" stars

such as Cassiopeia.

Man-made noise comes primarily from ex-

traneous electromagnetic radiation generated by
electrical devices.

Much of the above noise can be minimized

by modulation techniques which translate the in-

formation band to carrier frequencies that lie
outside the noise bandwidths.

On the other hand, thermal noise covers a very
wide bandwidth of frequencies and can be mini-

mized by using specialized techniques such as

phase-locked loops and cold-temperature re-

ceivers.

One obvious method of minimizing all noise

is to increase the signal power. This can be

accomplished by putting a transmitter on board

the satellite thus eliminating the need for skin

tracking.

The best set of carrier frequencies to use to
minimize cosmic noise lies in the band between

i000 mc and I0,000 inc. Man-made and atmos-

pheric noise are also extremely low in this band.

Thermal noise power at the receiver of a

tracking antenna is caused by thermal agitation

of electrons in the resistances in the input net-

work. Thermal noise received power can be

expressed by

PN = k. T • A f. NF

where

PN =

k =

Available noise power at the receiver
(watts)

Boltzmann, s constant = 1.38 x 10 -32

w-see/° K

Effective input temperature (not neces-

sarily the physical ambient temperature)

(°K)

A f = Effective input noise bandwidth (cps)

NF = Noise figure of input circuit (up to the

de modulator).

Reducing T, A f, or NF will reduce the noise

power. Temperature T can be reduced by bathing

the receiver in a cold environ_nent, using re-

ceivers whose effective temperature is low (such

as reactive amplifiers and masers), and by

"looking" only at cold space. Noise bandwidth can

be reduced by using narrowband filtering but this

also limits the signal bandwidth.

As long as the signal is above a certain thresh-

old, modulatiop techniques such as frequency

modulation and pulse code modulation can be

utilized which very effectively suppress the noise.

The improvement of signal to noise ratio is _-
by using an f-m system instead of an a-m system

with identical input bandwidth (for random noise).

Another method of suppressing noise is to use

a phase-locked loop in which a ground transmitter
transmits to the satellite transponder which trans-

mits back down to a ground receiver. The ground

receiver is kept locked in phase to a multiple of

the transmitter frequency by a voltage-controlled-

oscillator which beats against the received fre-

quency and whose frequency is controlled by an
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error voltagefroma phasedetector. Thevoltage
controlledoscillator"follows"thereceivedfre-
quencybutwithjust enoughlagto allowa very

narrow band of frequencies to filter through the
loop. This narrow band is used as the information

band; and the information can be picked off by
filtering. Since the bandwidth is so narrow the

noise content is very small.

2. Examples of Probable Errors

Examples of the probable errors of orbit

determinations based on measured standard de-

viations of radar stations versus various param-

eters follow (see Ref. 7).

Description: The sets of curves are plots of the

i_ errors of the classical elements

versus radar errors. Notice that

the correlations between orbital

parameters have not been plotted.

Altitude Observations

370 km

650 km

93(I km

3700 km

Angles and range rate (range rate
held fixed)

Angles and range (range held fixed)

Angles and range (angles held fixed)

Same

Same

Same

Briefly, the studies produced outputs which

were the standard deviations ( 1 sigma) of the

geocentric spherical coordinates (r, A, D, v,

v, _), orbit elements (a, e, i, f,, w, M), and

periods (_) of various orbits of earth satellites.

Key to Symbols:

L A
V V

L s A s

= latitude, longitude respectively of vehicle

being tracked

=latitude, longitude respectively of sta-

tion(s) tracking vehicle

A

D

v

M

T

(7.
J

= right ascension of vehicle

= declination of vehicle

= velocity angle with the local geocentric

vertical

= velocity angle with north on the local

horizontal plane

= geocentric distance

= inertial velocity

= semimajor axis of ellipse of vehicle orbit

= eccentricity axis of ellipse of vehicle orbit

= inclination of orbit plane with the equa-

torial plane

= location of node of ellipse with respect

to vernal equinox _"

= argument of perigee of ellipse

= mean anomaly

= period of orbit

= standard deviation of any quantity j (o- = (x)

N = number of observations

T_ = distance (in degrees) of earth track of
vehicle at closest approach to tracking
station

h = altitude from surface of

The spherical coordinates, orbital elements

and periods were calculated by the computer

program and were based on least square fits of
observations. The observations were generated

from trajectory tapes with noise added.

The inputs to the curve fitting program were

observations (range, range rate, azimuth and

elevation) of a "satellite" by a tracking station(s)
versus time, the station location(s), assumed

standard deviations of the observational data, the

nominal orbit of the satellite, and the data rate of

the station(s).

To obtain the tables and graphs included in

this section, many of the input variables were

varied to obtain various outputs.

Quantities varied were: observational sigmas,
station locations, orbit parameters, number of

iterations, earth tracks of satellites and data

rates. The earth track (designated (_ track) of

a satellite is the projection of the orbit upon the

surface of the earth; the earth track was speci-

fied by the number of great circle degrees away
from the tracking station at closest approach.

Thus graphs were obtained which were plots

of a L, op, a_

a A,G D,a r,o ,arT, Or versus

crE, ap, cry, _)track, h, v, A, L

C_a' °e' (_i' o_ a0a' °M versus

cre, op, o_, _ track, h, r, A, L

o r versus a, c_o, _,(_9 track, h, r, A, L

Only graphs showing the spherical and orbital
errors versus o and o are given in this section;

p

these result in 36 graphs.

Other pertinent points:

(i) All observations were some combina-

tion of range, range rate, azimuth and
elevation.

(2) All output sigmas are normalized to 16

observations by multiplying by _N/4
where N is the number of observations

in a given pass of data.

(3) Azimuth and elevation sigmas are al-

ways assumed equal and are usually

plotted as cr . (crc_ = cr )E E

(4) For comparison, most runs used only
one iteration.
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(5) Asymptotes are drawn on the graphs as
straight lines.

Most of the graphs tend to show dir0inishing

returns in accuracy of orbit determination in at-

tempting to improve the angular accuracy better

than 0.5 ° (if the sigma of range raze is held fixed

at 1 fps (0.3 raps) and no range observations are
taken).

Using only range and range rate observations,
the same accuracies in orbit determination as

above i.e., (or = 0.5 ° , e0 = 1 fps 0.3 raps) can

be obtained if the deviations are 600 ft (183 m) in

range and 1 fps in range rate.

IIenee a "balanced" tracking system could be
defined as one whose measurement standard de-

viations are as follows:

o. = 1 fps 0.3 raps (range rate observation
P error)

a = 600 ft 183 m (range observation error)
P

cr = 0.5 ° (azimuth and elevation angular
c observation errors)

The word "balanced" used here is not to be

used in the sense of optimum but rather in the

sense that improving the accuracy of one (only)

type of measurement does not produce a propor-
tionate increase in the orbit determination (as-

suming a balanced system).

3. Graphical Display of Observation Errors

Three basic sets of information are presented

for the mission analyst: (1) angular observation

errors for an assumed standard deviation of 1 fps

(0.3 raps) in range rate measurement c_- (2) angular
O

observation errors for an assumed standard devia-

tion of 600ft (183 m) inrange measurement or0, and

(3) range observation errors for an assumed
standard deviation of 0,05 ° in azimuth and ele-

vation angle measurement o. For each set are

shown the six spherical coordinates (a: A,D,r,v,

r_, v) and the six orbital elements (a: a, e, i, f_, _,

M) for orbits of four different altitudes (approxi-

mately 370, 650, 930 and 3700 km).

(i) Figures 8 through 19 (Set I.). These

f_ures show the standard deviations of

the six geocentric spherical coordinates
and the standard deviations of the six

orbital elements as a function of the

angular observation error for four alti-

tudes, where _. = I fps (0.3 raps).
O

(2) Figures 20 through 31 (Set 2). These

I_gures show the same variables where
a = 600 ft (180 m).

O

(3) Figures 32 through 43 (Set 3). These
figures show the stanaard deviations of

the six spherical coordinates and the
six orbital elements as a function of the

range observation error for four alti-

tudes, where cr = 0.05 °.
c

The initial conditions for both the angular and

range observation error computations are given

in Table 5 as a function only of orbital altitude.

The asymptotic values of the standard devia-

tions of the six spherical coordinates and six or-
bital elements for Sets 1, 2 and 3 are given in

Table 6. These are the limiting values in each

dependent variable as the independent variable

becomes very large. Because the data rate is
the same for each orbital altitude, 18 observa-

tions are contained in the results for the 365-km

orbit, 27 for the 645-km orbit, 33 for the 922-km

orbit and 91 for the 3710-kin orbit.

TABLE 5

Initial_ Conditions for Angular and Range Observations

(see Figures 8 to 43)

A/_[ttld L I_lu_

;_(;5 6t5 922

0 0 0

1,

A

A

N

0'

fmo N

0o

202. 7'

0'

_o"

_S. 74:, x 1_ u m

?_a mi_c

*_. 7._2 x tO _ m

2r_2. 7'

4. 1 :_

_a

0"

0'

202. 7

0o

7.01 x 106 in

7. 0± x _1_ _ m

_). OOOO9

_0 o

2(_. 7 '¸

0

SO" h

0"

Z02. 7

7. :_0,1 x 1_ 6 m

_. 30_ x 106 m

0. OOO9

2O2. 7'

_. 14

0

0"

0'

202. 7 o

0'

9U'

0.

107 ,n

(_ZU6 m J se_

107 m

0.0OO12

9O o

2O2 7 o

-t_0 o

3.14

10' W ]
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TABLE 6

Asymptotes of Dependent Variable. Figures 8 to 43

Set of 1 as _t "* _ (u_ = 1 fps) (0.3 mps)

365 645 922 3710

(height in km) (height in km) (height in kin) (height in km)

a A (deg) 0. 033 0. 040 0. 015 0. 040

a D (deg) 0. 041 0. 038 0. 017 0. 0036

a (deg) O. 018 O. 018 O. 008 O. 0012
v

a (deg) O. 018 O. 022 O. 009 O. 023

a (km) 3. 688 3. 658 1. 768 3. 048
r

a (m/sec) O. 43 4.27 2.0 O. 30
V

a a (m) 96.0 122 65.8 131

a 0. 625 x 10 -7 0. 063 x 10 -7 0. 030 x 10 -7 0. 870 x 10 -7
e

a i (deg) 0. 018 0. 021 0. 009 0. 023

a_ (deg) 0. 032 0.04 0. 015 0. 041

acj (deg) 2.6 26.0 12.4 2. 1

a M (deg) 2.6 26.0 12.4 2.1

Set 2 as a c -*_ (up : 180 m)

u A (deg) 0. 040 0. 031 O. 026 0. 019

a D (deg) 0. 038 0. 021 0. 016 0. 005

a u (deg) 0. 018 0. 010 0. 007 0. 0015

a (deg) 0. 022 0. 016 0. 014 0. 002

a r (km) 3. 658 2. 377 1. 615 4.88

a (m/sec) 4.27 2.0 1.6 0.30
v

a (m) 122 99.1 94.5 110
a

a 6.7 x 10 -7 6.3 x 10 -7 7.6 x 10 -7 0.55 x 10 -7
e

a i (deg) 0. 021 0. 017 0. 014 0. 019

a_ (deg) 0. 037 0. 031 0. 026 0. 019

(deg) 25.5 14.0 21.0 2.2

a M (deg) 25.6 14.0 21.0 2. 2

Set 3 as ac "* _ (a = 0.05 deg)

a A (deg) 0. 015 0. 014 0. 014 0. 013

_D (deg) 0. 017 0. 017 0. 018 0. 022

a (deg) 0. 0085 0. 0083 0. 0090 0. 0085

or? (deg) 0. 0087 0. 0082 0. 0082 0. 0077

a r (km) 1. 768 1. 798 1. 890 2. 012

(m/sec) 2.01 1.92 1.89 1.83
v

a (m) 70.4 79.2 88.4 131
a

a e 3.0 x 10 -7 5.3 x 10 -7 9.0 x 10 -7 2.9 x 10 -7

a i (deg) 0. 009 0. 008 0. 006 0. 008

a_ (deg) 0. 015 0. 014 0. 018 0. 013

a (deg) 12.2 13.0 25.7 12.0

a M (deg) 12.2 13.0 25. 7 12.0
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XII. GUIDANCE AND CONTROL

SYMBOLS

Semimajor axis

Orbit eccentricity

Eccentric anomaly

Acceleration due to gravity

Orbit inclination

Geocentric latitude

Mean anomaly

Orbit radius

Radius of the earth

'rime

Time of perigee passage

Magnitude of vehicle velocity

Azimuth of velocity vector relative to
nominal

Azimuth of the orbit path relative to the

north point on the horizon

Flight path angle relative to local
horizontal

P

2

a

P

co

r_

Gravitational constant of the earth; also,
mean value in statistical discussions

Angle from the ascending node to the

projection of the radius to the vehicle

on the equatorial plane

Range; also, correlation

Variance

Orbit period

Earth central angle in the orbit plane

from ascending node to the vehicle

position

Earth central angle normal to the orbit
plane

Argument of perigee

Longitude or right ascension of the
ascending node.

Subscripts

Apogee value

Perigee value

True anomaly
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A. INTRODUCTION

Thepurposeof this chapteris threefold.

(1} Developtheguidanceandcontrolre-
quirementsasfunctionsofthetolerances
imposedonthetrajectory.

(2) Introducethesubjectof satelliteguid-
ancewithadiscussionof guidance tech-

niques.

(3) Introduce the subject of attitude control.

The first item can generally be discussed by de-

veloping an error analysis relating the errors in

a specified set of orbit parameters, or, analogously,

in position and velocity at a specified time, to

errors occurring at injection and then by relating

errors at injection to errors in the powered ascent

phase. The first analysis is presented in Section

B of this chapter (powered ascent trajectories are

not covered in this manual} in a general form ob-

tained without sacrifice or assumption. The re-

maining discussions will be of a more qualitative

nature. The difference in emphasis is due to the

fact that the field of guidance and control involves

studies both of techniques and hardware to imple-

ment the desired changes; however, discussions
of hardware have been omitted from this text due

to its constantly changing nature. These dis-

cussions are presented in Sections C and D,

B. GUIDANCE AND CONTROL

REQUIREMENTS

Since the goal of a guidance and control system

is generally to bring the vehicle to a certain
position with a certain velocity, the first step in

design of such a system is generally ascertaining

the accuracy in this position and velocity required

by the mission. The mission requirements are

usually expressed in terms of allowable tolerances

in orbit elements or required position and velocity

accuracies at some terminal point in the trajectory.

Therefore, the designer must be able to relate
these mission tolerances to tolerances in the

final position and velocity of the trajectory phase

in which the guidance system is operational.
Relations between these tolerances are derived

in this section. Errors in elliptic orbits are
considered in Subsection 1, and errors in

powered flight trajectories are considered in
Subsection 2.

I. Error Analysis of Elliptic Orbits

An elliptic orbit can be completely specified

by assigning six independent parameters. Of

particular interest are the classical elements

(semimajor axis (a), eccentricity (e), argument

of perigee (col time of perigee (tp), inclination of

the orbit plane to the equatorial plane (i5 and the

celestial longitude or right ascension of the

ascending node (_) and the polar position and

velocity components (radial distance of the vehicle

from the center of the earth (r}, central angle in

the orbit plane from ascending node to vehicle

position (_), position angle normal to the orbit

plane (4 = 0 nominally), vehicle velocity magnitude

(v), flight path angle in the vertical plane relative

to local horizontal (R) and flight path angle in the
horizontal plane (azimuth angle) with respect to

north (N). Differentiation of the equations re-

lating these two systems provides a set of error

forrnulas which serves as a basis for specification

of guidance system requirements.

a. General differential analysis

Since the equations relating the planar

parameters (a, e, co, tp and r, _, v, "/) are not

coupled with the equations relating the parameters

defining planar orientation, the derivation can be

conveniently considered in two parts.

(1) Planar parameters

Generation of the four error equations

da = fl (dr, de, dr, d R)

de = f2 (dr, de, dr, dR)

d¢o = f3 (dr, d¢, dr, d R )

dtp = f4 (dr, de, dr, dR5

must be based upon four independent relations

between the variables (a, e, co, tp) and
(r, ,, v, R}:

2 2 1

v = _ (F -_) (I)

2 2 2 e 2)r v cos % = .a(1- (2)

a (i - e 2) (3)
r - 1+ e cos (_ -co)

a

tp - t = - -_- (E - e sin E)

f 3

a M (4}= - __

where

E = cos-i (a-I)

These equations are, respectively, the energy

equation, the law of areas (Kepler's second law},

the equation of conic form (Kepler's first law) and

Kepler's equation. The establishment of these

laws is considered in Chapter III. Taking dif-

ferentials of Eq 1'1) gives the required linear

error formula for the semimajor axis.

2 2a2v
da = 2 =-_ dr + -- dv (5)

P
r

This equation is most conveniently expressed in
normalized form with coefficients written in

terms of only one variable, either r or 0 = _ -w.

From Eqs (1} and (3)
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or

da

2
a

--2 --,/-dr
r

2 (1 + e cos 0) 2

(1 - e2) 2- "

dV

dr

] i + 2e cos 0 + e 2
+ 2a Vh- V 1 - e 2

(6)

dv (7)

dr (2 1) (8)da _ 2(_)T+ 2 a dv-9"a

1 + e cos 0 dr
= 2

2 r
1 -e

+ 2(2 l+ec°s0 1) dv2--- - _-. (9)
1 -e

J¢Also, since the orbit period = 2_T

dT.r - _" "_-=3 da 3 _-_adr + 3 (2a. 1)d.d__Tv__ __') Dif-
!

ferentials of eccentricity may be determined

from Eq (2).

2 2

de _ v cos Y (a-r) dr
pea

2

+ 2rv cos "l (a-r) dv
pea

2 2

+ r v sin _ cos -_ d_/ (10)
_tea

Substitution of Eqs (1), (2) and (3) and simpli-

fication gives

de - 1-e2er (a - 1) dr

2

+ 2 1 - e (a- r) dv
er

(e + cos 0) (t+e cos 0) dr

a (1 - e 2)

1

+ 2(e+eos _)I_ a(_l.- e2___)
(I+ 2 e cosO+e 2

sin 0
+ (1 - e 2) 1 + e cos O d7 (12)

/2

dv

or, in normalized form,

de

2
1 -e dr l-e2(aOdv(_- i)-_-+ 2---6---- F- _-

(13)

dr +
= (e + cos 0) -_- 2 (e + cos O) dVv

sin 0 d7 (14)+ (1 - e 2) 1 + ecosO

From Eq (3),

cos (_ -_) a (1 - c 2 )- r
or

differentials of the argument of perigee may be
written.

- sin (¢b - ¢o) (de - clw) - I+ e cos (, d&
C a

- IcOs---_-0+ 2 1 + e¢osO_l-e -L_---]

1 + e cos 0 dr

e r

de

Substitution for da and de from Eqs (5) through

(14) gives _o.

d_ =± e- r

e

d_ - sin 0 dr + 2 sin 0 dv
e r e v

2e+ (I + e 2) cos 0
+ d_ (16)e (1 + e cos O)

The linear error relation for the final planar

element• tp, is obtained from Eq (4).

d (tp - t) _ 3 da sin E

t -t
P

2 a E - e sin E

1 - e cos E
+ E - e sin E dE

de

(17)
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where

dE : - e si----n-_ _ - - _ _- - •

(i8)

Substituting for da and de from Eqs (8) and (13)

or (9) and (14), and substituting Eq (18) in Eq (17)

gives the required relation

d(tp- t) <3 a 1 I a a 2tp - t - _+_i- 2 r - i - (_) (i

e2i-1/2 I_ r- 2+_

(i - e 2] a (i - e 2)i),2 ,
e

M e 2 1 - d T

(19)

= <3 (1+ e cos0)1.... _-2 + M1 J1 - e2ISi_ 0 2

+ (e + cos 0) cos a + 1%-6 c-6% --

+r 3 1 + 2 e cos 0+ e 2

t i -e 2

dr

r

2 i - e 2 l+ecosO+e 2 idv
- I_-T e sin 0 1 T e co-s-0 J'-v-

1 (I -e2) 3/2 cos O d}, (20)
+M e l+eeos0

where M = mean anomaly = E - e sin E.

(2) Orientation parameters

The out-of-plane coordinates and injection

parameters (d 9, the displacement in central angle

normal to the orbit plane at injection, and di3, the

error in orbit azimuth or orbit orientation in the

horizontal plane} determine the orientation of the

orbit plane in space, as defined by the orbit

parameters i, the inclination of the orbit plane

to the equator, and f_, the right ascension of the

ascending node.

%

2
The required error relations

a_ d_3

can be determined from consideration of the

accompanying sketch and Table 8 of Chapter Ill,

the table of spherical trigonometry identities.

cos (i 0 + At) : cos (L 0 + AL) sin (_0 + A_)

Since only a differential approximation to the
error is required, the terms of this equation

may be expanded in Taylor series, and terms of

second order in the errors may be neglected.

cos i 0 - sin i 0 5i _ c,s L 0 sin _0

+ cos L 0 cos /_0 Af3

- sin L 0 sin fl0 AL

Since cos i0 : cos L 0 sin /30'

cos L 0 cos _0

Ai _ - sin i0 A_ +

sin L 0 sin _0
AL.

sin i 0

(21)

A relation

AL : f (_+, A_)

is then required for substitution in Eq (21). Such

a relation is obtained from application of the law
of cosines to the spherical triangle formed by

two meridians and the side A9 in the sketch.

cos (90 ° - L 0 - AL) : cos (90 ° - L 0) cos A

+ sin (90 ° - L 0) sin A O cos (90 ° + /30)

XII-4



Simplifyingandexpandingin seriesgives

AL = - sin_30AO.

Substitution of this equation in Eq (21) gives the
error in inclination

cos L 0 cos /30 sin L 0 sin 2 /30
di = - A/_ -

sm 10 sin 10
A_.

The error in nodal right ascension may be deter-

mined by noting that

cos (fl0 + A/3)

cos (u 0+ AA - A_) :

and

sin AA _ sin (90 ° + _0 )

sin A9 sinTg-_ - L 0 -_)

These equations on expansion give

tan u 0 (AA - AFt} = tan _0 At3 + cot i 0 Ai

AA = cos /30

cos L 0 A 9.

Then

d_2= I tan /30 cot i0 cos L 0 cos /30]- tan u----_+ tan u 0 sin ]0 JA/3

+_ cos _0 cot i 0 sin L 0 sin 2 /301
Lc-_ L 0 + tan u0 sin i0 Adj.

The di and d_ solutions can be written completely

in terms of L and i as follows:

sin L 0 cos 2 i0 Ii sin2 LO

di .... d_ ¥_ d_sin i 0 cos 2 L 0 sin 2 i 0
(22)

df_: ±
sin2 L 0

1 1 - -- d_

2 sin 2 i0cos L 0 sin i 0

sin L 0

2 .

sin i0

d;_ (23)

The orbit plane orientation errors can also be

derived in terms of a velocity azimuth error, de

referenced to the local nominal direction of the

velocity vector, rather than the orbit azimuth

error d/3. That is, from the following sketch, if
the orbit orientation is in error due to a Aq_ but

Aa - 0, the incorrect orbit (as well as the correct

orbit) is normal to the arc Ag. The new orbit

azimuth angle, _1' is not equal to the nominal

orbit azimuth angle, _0' even though the velocity

azimuth error is zero. Then, from the spherical

trigonometry relations of Chapter IIl,

cos (i 0 + Ai) = cos L' sin (_' + A_)

inANPN I, where the primed quantities relate to

the intersection point of the nominal and incorrect

orbit planes. Expansion of this equation in Taylor

series and neglecting higher order terms as before

gives

Ai = _ cos L' cos _' Aqj.

sin L 0

Since

cot i 0

tan _' = _s (90 - _0 )

where

_0 : arc N O S O

and

cos i 0

sin /3' - cos L'

sin L 0

Ai = - sin q_0 A + : - sin i0 A_.

Similarly, from

tan (u' + Aft) = sin L' tan (_' + A_)

when

A_ : arc N O N 1

A[2 = sin L' cos 2 u' ky
2

COS _!

or

Af_ = cos _Ay_ i
sin i_--O sin i0

t sin2 L 0-- 1 - --_---
sin i 0

Ay.
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Nowconsideranerror dueto 6_ superimposed
onthepreviouslyconsideredincorrectorbit as
shownin theaccompanyingsketch. Theaddi-
tionalerrorsdueto 6_ will bedenotedby 6 ().

f--Orbit in error

\ due to both

A¢ and b_

Orbit in error _ \ Ai $1

due to&qJ only _ __

o + _loW_/\" o_i ,_1

cos (I0 + 6 i0)

sin (_i " 6_) = cos L I

where

I0 = i0 + &i 0

or

cos _i cos L I

6i0 - slnT 0 6c_

cos /30 cos L 0

sin i 0

Also, from

cos (u1 - 6_) =
cos (_1 - 6_)

sin (I 0 + 6i)

coS HI cos _i

sin I0 sin I0

sin _i

--cot I 0 6i + _ 6_

sin L 0
~ 6oi

sin _ i0

The the total error formulas, analogous to Eqs

(22) and (23), are obtained by adding the con-
tributions due to A@ and 6t_ (that is, forming

Ai+ 6i and A_ + 6fD.

sin L 0

di = -sm i-_- d_+ cos _0 da
(24)

d_-
sin L 0

cos _>0 d_+ _ d_

sln i0 sin i0

(25)

The differential error expressions derived

in this section (Eqs (8), (9), (13) through (16),

(19), (20), (24) and (2,0) are presented concisely

for reference in Table 1.

The inverses of the relations expressed in

Table i (that is, the errors in polar position and

velocity components as functions of errors in the
classical elements) are also useful error formulas.

These formulas can be generated simply by in-

verting the matrix of coefficients given in Table

I. If Table i is expressed as

where

d (t E - t) _1tp- t , di, d

= the six vector of nondimensional

orbit parameter differentials

= , --_-, d y, d<_, d_, d

= the six vector of nondimensional
)olar coordinates

all a12 0 0 0 0

a21 a22 a23 0 0 0

a31 a32 a33 l 0 0

a41 a42 a43 0 0 0

0 0 0 0 a55 a56

0 0 0 0 a65 a66

Then the required inverse matrix is

where

%

-i
_ijl

= a..

adjoint of E 13] (transpose

the cofactor .na_rix)

laij[ = determinant with elements aij.

Inversion is most conveniently accomplished if

the 4 x 4 submatrix of planar parameter coeffi-
cients and the 2 x 2 submatrix of orientation

parameter coefficients are inverted separately.
The process is also simplified by noting that

all a12 0 0 Iall a12 0

Ia21 a22 a22 0
= -

a31 a32 a33 I a21 a22 a231

a41 a42 a43 0 a41 a42 a43

2

M

e2) 3/2 e 2(1 - (1 + + 2e cos 0)

e (1 + e cos 0) 2
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Th(' ]'{'stlJtJll_ ill\'('i's_' HlzitriN i_ pFcS(!l]tLd ill
Tabh' 2.

With the relations of Tables 1 and 2, errors

in one phase of atn orbit can be determined as

functions el errors scteral phases prior to or'

subscqucnt to that phas(?. For example, errors
in position and _elocity at orbit injection can be

used to solve for t trots in thv orbit elements,

which can in turu be used to determine by the

i[1VL)I'N() relations, errors in position and velocity

at any /'uture time.

b. Errors in orbit extrema

Orbit tolerances are frequently specified in

terms of allowable errors m apogee or perigee

eonditions. For example, in establishment of a

low-altitude orbit, a perigee altitude tolerance

may be specified in order to assure a long orbit

lifetime. Equations for these errors in apogee

and perigee conditions can be easily determined

as a special case of the previous general analysis

(Section B. 1. a. ).

From Eqs (1) and (3)

r = a(1 + e) (26)
a

r = a (1 - e) (27)
P

Va l+e

{-u i + e
(20)

Vp = I_ i - e

where subscripts a and p denote apogee and perigee

conditions, respectively. These equations yield

the following differentials.

dr = (i + e) da + ade (30)
a

dr = (1 - e) da - ade (31)
P

v V

ada P de (32)
dVa= - 2_ (t + e) 2

V V

dv : - _P da + a de (33)

p 2a (l - e) 2

These equations may be expressed in nondimen-
sional form as follows.

dr

a= d__l + de (34)
r a l+e

a

dr

p = d_ de
r a 1 -e

P

(35)

dv

a= ida de (36)
v -_-a - 2
a i -e

dv

_ p = 1_ da+ d%_ (37)
vp 2 a I - e 2

']'hctl

dr

ff

1
YT-T,

1
1

l+e

-1
1

i - c

,-di
de

all

a21

al 2 0 i

a22 a23 j

and

1 ]idi1 1 de

L PJ 1-

I -- ii a12

=

21 a22

dl"

T-

dv

v

d7

Substitution of the a.. from Table 1 gives the
1j

differentials of the apogee and perigee values.

dra a I i e O r)]drra _- 2 + --e-i-- - -_-

+ 2 ay [1+ 1 (1 -r)l _-

,-e r2
± T (_) 1 dy

(1 - e 2)

-rp F - _ - T-

+2
a I1 ' (r)l dvr -_ i - -V-

l ,,.i

a- 1)
_l+e r 2 (2y i dy

--5-- (a) (1 - e2)

Va -y+_ t - --6-+ - 2 r

+-e - YJ-J_- l - e 2

(38)

(39)

l

1 d 7

(40)
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%_ 1¢ 1,i
vp - 7 + _" - --6-

I a+2 a 1)_! dv+ 1-2r e-(F- _

I a -i)
i r 2 (2 _-

_* g (7) --7--
i- e

-i

upper sign for + ./. lower sign for - _,

With coefficients expressed in terms of the

variable (% Eqs (38) through (41) become

d-_

(41)

d I:"
1 dra

(2 - e + cos 6)T -= _
a

+ _(i + cos _)d-y-Vv

sin 0
+(1 - e) 1-+ e cos0 d_ (42)

dr

1) _ 1 (2+e-cos {i) dr

P

2
+ i--4-V. (1 - cos l_) dVv

sin ()

- (1- e) I+ e cos _3
dS' (4 ;:l)

dv
I__E = - (1 + cos o) c'-L

v 1-e r
a

1
- _ (1 + e + 2 cos 0) dVv

sin l_ d'f
1 + e cos 0

(44)

clv
l ) = -

g

f)

1
+1-4-7 (1 - cos O) drr

1
- +IT--d- (1 - e - 2 cos _,) dVv

sin 0
+ d'Y (45)

i + e cos 0

Eqs (3g) through (45) are collected in Table 3.

c. Evaluation of crilical cases (e - 0, i 0 _')

Many of the error formula coefficients in-

volved in transformation from polar coordinate
errors to orbit element errors (Table 1) are

indeterminate or inaccurate for e 0 or i 0%

Error formulas for these special cases may be

developed by a Taylor series approach, as used

in Ref. {1)0 If a = a 0 + /x a, r = r 0 + At, v =

v 0 + /', v are substituted in Eq (1),

I 2 (v0 +zxv) 21 -1
a 0+2xa = r0q=Ar - _ j

Since a 0 = r 0 and v 0 = lr_- for nominally_ circular

orbits,

1 +&a 2 iIT-7 2x r 2x v (46)r0 = - (1+-_0)2 -1

Neglecting terms of second order and higher in

the Maelaurin series expansion

2
n(n

(I+E) n = i + nE +
2_

n(n-1) (n 2) _3
- + (47)

! ° . ,

2
(_ << 1)

of the wlrious terms of Eq (46) gives

m r 0 A v 0 2)A___a 2-- + 2 -- (1>>_
r 0 r 0 v 0

(48)

which checks with Eq (8) for nominally circular

orbits (a 0 = r 0 in tim coefficients)° l]owever,

similar evaluation of A e from Eq (2) (that is,

letting r = r 0 + &r, v = v 0 + /xv, ,¢= /vy in

2 1 2 4 2 2 2 2

e = 1 +-=-Z r v cos ,_ -_- rv cos

requires retaining second order terms in ap-

proximations by Eq (47) since the first order

terms vanish. The resulting solution is

2
2 av Ar 2e -: (2 + r--) + y

V 0 O

(1 _,-. e 2)

(49)
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Similarly the series approximation of Eq (47)
gives, from Eqs (26) and (27),

A r
a &a

r 0 r 0
+e (50)

_r

_ A a -e

r 0 r 0

(1 > >e 2)

(51)

Substitution of Eqs (48) and (49) in Eqs (50) and
(5I) gives

A r0 A v 0
Ara _ 2--+2--

r 0 r 0 v 0

(52)

Arp Ar 0 AV 0
-- _2_ +2_
r 0 r 0 v 0

I( AV + Ar 2 2
- 2 v-0- r--0-/ + Y

(53)

The elements _ and t are not defined in the
P

circular orbit case and, therefore, will not be
considered. However, di and d_are indeter-
minate for i -- 0°. For this case, from spherical

trigonometry,

cos Ai = COS AqJ sin (90 + Ap).

v

d

The Maclaurin series approximation gives

or

At2 (i A_2 \
i --2- = ----2--]

Ai 2 = A_ 2 + A_ 2 (54)

The error in _ is not defined (since, for the
nominally equatorial orbit, the ascending node
is not defined). However, the node of the in-
correct orbit can be determined from

tanA_ _ Z_ (55)
sin v = tan-aff--_i- -

The case of near circular orbits is also con-
sidered for the inverse transformation (errors

in polar coordinates as functions of orbit ele-
ment errors) in Ref. (1). For the small eccen-
tricities of this special ease, the planar
variabIes can be expressed by the following
series expansions, as given in Chapter III.

2
r = 1 - e cos M - e (cos 2M - 1)

(continued)

XII- 1 1

3
e

(3 cos 3M - 3 M) -...
2:24

V 2
- 1 +e cos 0 +_ (3 - cos 2 0)

3
e

+ -if-(4 cos 0- cos 30 -7) +...

= M +2e sinM + 5_ sin2 M

M

2
For e

3

+ _/ (13 sin 3M - 3 sinM)

2 3

__ e sin 30= e sine - sin 20 +--,3--

= mean anomaly :f-_a _ (t - tp) (56)

< < 1, approximate relations can be
written.

r = a (1 - e cos M) (57)

v_ _aP- (1 +e cosM) (58)

0 = M + 2e sinM (59)

_ e sin M (60)

From Eq (56)

or

M = M0+AM =

Ir P ]I/23 (1 + __)3 (t-tpo-_tp)0 t

3 Aa Mo_l_Sr Atp. (61)AM : - _ r--_
r 0

The errors at any later time Z_r2, Av2, A¥ 2

and A 02 will be determined as functions of Arl,

Av 1, and A 71 by varying one injection parameter

at a time and assuming a linear combination of the
individual errors.

Case (I) [Ar 1 = 0, Av 1 = 0, Ay, # 0]

If '_1 is the only launch parameter which is in

error, Ar 1 =0, Av 1 = 0, Y1 =A'(l" and from

Eq (49), e: IA_II " where A5,1 is an error due

to a velocity component normal to the desired
circular orbit velocity at launch. For the cir-
cular orbit, M and t are referenced to the

P
perigee direction in the incorrect orbit. Since
the semimajor axis a is a function of r and v but
not "_, Aa : 0 for this case. Then, from Eqs
(57) through (61),

ZXr(1 ) : -er 0 cos M 0 = -r 0 AY_ cos M 0

/

Av(1) - a
"TO - _11 cos M 0



' A
A0(1 )= - t---Gd At 42 _1 sinM 0

r 0 P

a_'(1 ) = Idx'YI{ sin M 0

From the dr(1 ) equation, As = 0 when cos M 0 = 0.

Therefore, for case (1), M 0 - 90 ° (for _1 positive)

or M 0 = 270 ° (for Y1 negative). The absolute

maRnitudes in these equations may be removed by

defining a mean anomaly M 0, referenced to the

initial point. Then 7_/0 - M0 - 90° for positive

_'/1' and 7*/0 - MI) + 90 ° for negative ±'gl Sub-

stitution in the previous equations gives, for

either positive or negative ±71 ,

ar(D
~ A _'1 sin _0 (62)

r 0

Av(1) sin yl{0 (63)
v0 _ - A,_ 1

&0(l ) = 2Ay I (cOS_o - 1) (64)

AW(1) = AW l cos _0 (65)

In derivation of Eq (64) use is made of the fact

that AO(1 ) = 0 at _0 = 0 since the correct and

incorrect orbits intersect at the initial point.

Case (2) I/W1 =0, AVl =0, /"rl # 01

For AS' 1 = 0, AV 1 = 0, Ar I # 0, Eqs (48)

and (49)

give

Aa(2) - 2 Arl

r 0 r 0

e(2 ) = rl

Then, from Eqs (57)through (61)

_r(2) - 2 arl larll
r 0 r 0 r 0

cos M 0

/"v(2) = 2xrl I/"rll COS M 0
v 0 r 0 + r---- 7-

_rl-- - _---,j pA0(2 ) -3 r0 M 0 At

+ 2 r0 sin M 0

b rll
sin M 0A "(2) r 0

But M 0 = 0 ° for /',r 1 positive, and M = 180 °

for Ar I negative. Then, for _ll 0 = 0 ° at launch,

Ar(2 ) _ &r

r 0 r 0
1 (2 - cos Try()) (66)

Av(2) _ &rl

v 0 r 0
(cos ";710 - I) (67)

Ar 1
(2 sin )7/0 - 37_0) (68)

A0(2) r 0

_,r, 1
= sin ?q0 (69)

A_(2) r 0

Case (3) I A r I = 0, A'_I = 0, Av 1 # O]

For the remaining ease, where Ar 1 = 0,

AN 1 = 0 and Av 1 _ 0, I,;qs (48) and (49) gives

±V
/'a (3) _2 I

ro -VT,

I_v,I

0(3 ) _ 2 _ .

A procedure similar to that used in cases (1) and

(2) gives

Av 1
At(3) ~ 2 -- (1 - cos 7",I0 )

r 0 v 0

Av(3) _ AVl (2 cos _0 - 1)

v 0 v 0

Av 1 Av

AO(3 ) = -3 ?_0 v 0 + 4 v0

(70)

Av 1

Ay(3 ) = 2 Vo sin31 O"

(71)

1
sing_ 0

(72)

(72)

The total error solutions are obtained by combin-

ing the effect of all three errors linearly (adding

Eqs (62), (66) and (70); Eqs (63), (67) and (71)_
etc. ).

Nil-12



Ar 1/',r

_ sin _0 _ Y1 + (2 - cos 72[0 ) r0r 0

_V

1 (74)
+2 (1 - cosT_ 0)

V 0

Av Arl

sin ;_0 £x_'1 +(cos ?_o - 1)
v 0 r 0

&v 1

+ (2 cos _0 - 1) v0 (75)

Ae _ A0_ 1 + 2 (cos _0 - 1) A_' 1

Ar I

+(2 sin_0 - 374 0) r0

/',v 1

+(4 sin;_0 - 37"_ 0) v0 (76)

Ar I

A'_' -- cos 7_0 A_I + sinT*/0
r 0

+ 2 sin 7"2/0

2
e <-<I

(77)

d. Statistical analysis

The error formulas developed in previous

sections serve to convert a specific set of errors

froFn one system of orbit determining varitH_les

to another, ltowevcr, in preliminary design

work, specific sets of errors arc frequently not

of interest° Rather, the design engineer must

determine the probabilit 5 that a certain error ..viii
be less than the tolerable limit. That is, he re-

quires a probabalistic relation rathcr than an

algebraic relation between the t_rror's. This
section concerns the determination of the error

probabilities from the previously determined
error formulas,

(1) Probability of Linear Error Functions

The majority of these error formulas are
linear differentia] approximations of the form.

u = _/_ a i x i, i = 1, 2 ..... k

i

where the a. are constants. If the x. (the errors
L L

to be transformed) are independently and nor-

mally distributed with means _i and variances
2

o-. , then tile tnonnent generath_g ftlllCtion /.l (t)
1

for the distribution of the vark_t< EL is _ivcll as

follows:

k

m (t) = _ , ... ,
• = -_ -ce -,_

- o._- dx I (Ix!)...dx k

1 1

Transformation to the standar,l l'_,t'm is conveni-

ent.

I A!I

x.: - /_i

Yi o.
1

ThcF1

k/2 Q� e×p (l_t] _i) cxp (taiYiO i

k/2 __

i

exP(½t2a_2o[ 2)

cxp (- 2 Yi 2 t 2a2o2

exp ai/ai +- =2 •i °i (78)

However, the moment _enerating function for 1he
hernial distribution is

m n (t) exp (t/_ + _ t2 o 2 )

'l'htl_cfor( ,, Eq (78) is the moment gencFatin_ t'cme-
tion for a noFmal distribution

%%it}1 IltCLlll L![I[] varit/net! _iven by

/_ : _" _i _i (79)

1

') xk" 9 ')o _ aY a.- (,_{O)

]

Sm_iLarly, if the x. arc cot'reLatcd instead of he-
1

itl_ ]l](]('i_ctl_tc'nIiy dislributcd, u is disll'ibu_cli

horn]ally with
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u =_-- ai ui (81)
J

i

1 l,J

The covarianee, oij, is sometimes written p aolj i j

where Pit is the correlation. These results (Eq

(79) and (80) or (81) and (82)) then describe the

probability distributions of the left-hand column

vectors of Tables l, 2 and 3 if the distributions

of the right-hand column vectors are assumed to

be normal. For example, from Eq (48), if Ar and

Av are normally distributed with zero means, then

Aa is normally distributed with zero mean and
variance

(_Aa = 4 + oar PAvAr OAv OA

----,2- + 2 Vo ro .
r 0 v o r 0

(nominally circular orbits)

Once the distribution of the transformed error

is determined, the probability that u will lie be-

tween two given values u I and u 2 is given by

u 2

Eu, 
u 1

Since areas under the normal error distribution

curve are widely tabulated, the probability that

the error u will be less than a specified tolerable
limit u*,

U*

P[lu,< u_t = ._ n(u) du, (83)
0

may be readily evaluated from tables. The solu-

tion for error probabilities has thus been obtained
in all cases in which the error formula can be ap-

proximated by a linear function.

(2) Probability of Nonlinear Error Functions

Although most of the error formulas are linear,
certain formulas for nominally circular orbits (for

example, Eqs (49), (52), (53) and (54)) involve non-
linear relations of the form

u = lXl2 + x22 (84)

Determination of the probability distribution of the

function of Eq (84) is not so simple as in the case

of the linear error formula, and the resulting dis-

tribution is not normal. If x 1 and x 2 are assumed

normally and independently distributed, their joint

distribution is simply the product of the individual
distributions,

1

exp -_ + ) .
n(xl'x2} = 2n _Xl_X2 1 ex2- -JJ

The distribution of u may be obtained by elimi-

nating either x 1 or x 2 in terms of u to obtain

a density

g(u, : _ n (u, x_), x laulx2) _ i i
i

where each term in the summation represents

one branch of a possibly nonmonotone function

U(Xl). The desired distribution, g(u), may then

be obtained by integrating over the x 2 in g(u, x2).

g(u) = i g (u,x 2) dx 2

-co

l 9 2In particular, for u = x I + x 2

8xl u

u - x 2

I 1 expg(u, x2) = 2 2_r oXl _x2

x ll .)
Thus,

g(u) :

2 2

1l/vx2
x 1

l u2 1

uexp 2 _xl i 1

F x#

" exp - ½ x2 _½ - - l dx 2

x 2

I: !_ g(u,x 2) dx t

After the transformation

2
t : x 2

this expression may be integrated to yield the re-

quired distribution

: u exp _- + i0 i

g(u) _Xl °x2 Xl x2 x2

_ i , 0 < x 2 < (85)

x I

= 0, x22 > u 2
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Thisg(u)(and,in particular,thedistributionof
correctedorbit eccentricityerror) is a skewed,
single-sideddistributionwithpositivemeanand
a shapesimilar to thatof thegammadistribution.

In manipulationof thedistributiong(u)thefol-
lowingdefinitionsareconvenient.

L
K1 = a a

x 1 x 2

K 2 = _ --+--
(Y

1 2

K3 --- _ 2--

x 2

The distribution is then

2
-K2u

g(u) : K 1 ue I 0 (K 3 u 2)

Quantities of some significance in describing the

properties of the distribution (e.g., central values,

spread, skewness, etc.) are the moments of the

distribution. The rth moment of g(u) is

_r = i _ u r g(u) du

K 1 i_ u r+l exp (-K2u2) I 0 (K3u2) du

After tile transformation t = u 2, the integral can

be evaluated in various forms.

_t n -K2t£

0

I v (K3t) dt: F(n+ u + 1)(K 2

- pn _

K2 > K31

K 2

where the generalized Legendre function is given

by

m/2

enm(z) = 1 /z+ lX .T (-n,n+ 1; 1ri-o---m-I_g=--T;
2

1 i z)
- m;_-- g

and the hypergeometric series is given by

(al ..... am; Y1 ..... Yn; z)

t (al). " " " (am). i= 1 1 Z

...._J i!_-I
i=0 1 1

Then

K1 r(_+ i) [ 4 ' _ -, 1;(

K 1 F(_+ 1) t

2 K2r72-g 1 ..ji=0

2i

_ K1 V

4K2_. g

In particular, the mean of the distribution g(u) is

given by

I:(N

1 3 5 K3 2 3 7 5 9 4

3 7 ii 5 9 13 6

(31)_ + .... J

The second moment is of interest in determination

of the variance of g(u).

i 3 5 7 K3 ; 1+..
Then the variance is

2

Thus, the probability distributions of errors

given by nonlinear equations of the form of Eq

XII-15



(84)are rathercomplex.Therefore,theprob-
ability thattheerror u will be less than a speci-

fied tolerable limit u* must be computed by nu-

merical integration or by the Monte-Carlo tech-

nique. The probability could be computed, for

the case of Eq (84} by numerical integration.

U -'it

P = g(u)du.
0

where g(u) is defined in Eq (85). However, in

general, this probability may be more readily

computed from

< ....
U< U#

(86)

where f(x 1, x 2 .... x n) is the multivariate distribu-

tion of the errors x 1, x 2 .... x n and the integration

limits are defined from the region in which u < u*.

If the number of random variables x. is larger than
1

five, the Monte-Carlo method is a convenient al-

ternate solution for the probability P that a multi-

variate normal variable lies in a region R. These

methods of evaluating the probabilities are con-

sidered in the following section.

The determination of the surface defining the

region u< u* (that is, the limits of integration) is

generally not difficult. In some cases, however,

this surface may be difficult to construct, In this

eventuality a more general technique may be em-

ployed. Consider for example an error function

which is expressible as a sum of a normally dis-

tributed error APn and an arbitrary known func-

tion f(Aq) of a second normally distributed vari-

able, Aq.

Ap - APn + f(Aq)

For a complicated function f(Aq), the determina-

tion of constant Ap surfaces in the Aq, APn space

become unwieldy. The individual density func-

tions of APn and f(Aq) are readily obtainable, the

latter by dividing the Gaussian density of Aq by

df(Aq)
--d_--' Ilence, f(Ap), the density function of &p,

can be formulated as a convolution integral of the

individual density functions

f{Ap) = _ g (Ap - g) z (g) d_ (87)

-co

where

g(APn) = density function of Ap n

z Ef(Aq)_ = density function of f(Aq)

(3) Evaluation of Multivariate Normal Probabilities

(1Ref. 2)

Error analyses and success probability deter-
ruination for space missions (as well as other

areas) frequently require the integration of a

multivariate normal distribution over some ap-

propriate region. In some instances, it is pos-

sible to use special computational routines to

obtain this integral. In other' situations, the

Monte-Carlo method may have to be used. A

general formulation and an illustration of both
methods follow.

Theoretical discussion and special computa-

tion_]7_i-KggT. __57_ is sought
w--_e re

U I U _
U'I U'2 n-1 n

P = <'L IL'2''" "<L' IL' f(xl ..... Xn'dXn'''dXl
'1 n - 1 n

(88)

with f(x 1 ..... x n) the multivariate normal distri-

bution with mean vector (_1 ..... /_n ) and vari-

ance- covariance matrix

I = = U...= {(Tij), i,j 1... n, aij jl

That is,

f (Xl," , Xn ) = _--t I"" --..... i72- exp

( 2_)n/2

n t?

1 _ x" ij -pi } {Xj - /aj)_- g -- L, {xi
j _ i=l -_89}

.. ,_-1
with u 1J the (i, j) element in the matrix

and II I denoting the determinant ofthe matrix

I and where

U' = U' Xn_ 1) L' : L' ..n n (Xl ...... n n (Xl' " Xn-1)

U t = U I ,..,,n-1 n-1 (Xl Xn-2)'

L' = L' Xn_ 2)n-1 n-1 (Xl ..... (90)

U_ = U_ (Xl), L_ = L_ (x 1)

U{ : constant, L_ : constant

In order to obtain the number P via the com-

putational routines, a transformation must be

made to new variables z 1 ..... z n which have

mean vector (0 ..... 0) and variance-covariance

matrix I n , the unit matrix of size n. That is,

the distribution of (z 1 ..... z n) is

(27r)n_/g exp - 2 (zl2 + z2 +'''+ Zn2 1)
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Of course, when a transformation is made to

these new variables (z I ..... Zn), the limits of

integration change as well as the integrand.

Therefore, among all the possible transforma-

tions, one must be chosen which will render the

limits in a suitable form for the computational

routines. Such a transformation is

i

xi = /_i + _ cij zj, i = 1 ..... n

j:l

(92)

with the coefficients c defined recursively by
U

Oil .....

°il
• l<i<n

i_l 2cil= eli - _ c ik , 1 < i_n
k=l

j:l

¢rij - Cik Cjk
k::l

c : , n>i>j>l
:j c_. -

JJ

(93)

e = 0, 1 < i< j < n.
lj -- --

Now the integral of Eq (88), giving the probability
P, is

p =----

U

1 U1 U2 _Un:l ,_ n exp[(E_ -]-2 _L1 _L2''" VLn 1 _L n

(z 2 +. + Zn2);\_ dz n dz 1
1

-_ 1 .....

(94)

with

U n = U n (z 1 ..... Zn_l), L n = L n (z 1 ..... Zn_ 1)

Un_ 1 = Un_ 1 (z 1 ..... Zn_2),

Ln_ 1 : Ln_ 1 (z 1 ..... Zn_ 2)

U 2 = U 2 (Zl) , L 2 = L 2 (z 1) (95)

U 1 : constant, L 1 : constant

where the limits U k and L k are obtained from U_

and Lk, by substituting into the relations L_ < x k

<_ U_ expressions (92) for the x's in terms of z's.

The following example may illuminate the

preceding generatities. Let the requirement for
a successful orbit be

-B < 6 r < 6 t" < A (96)
- p a -

for given positive numbers A and B. Equations

(52) and (53) can be written more concisely in

the following form:

6rp = t 3 - /t12 + t22 (97)

dra-- t3 + /712+ t22 (98)

where (t 1, t 2, t 3) has the multivariate normal

distribution with mean vector (/_1' _2' /_3 ) and

variance- covariance matrix

°12 _131

The numbers A and B are specified in the

mission requirements; and _1' _t2' g3' C_ll' °12'

o13, 022, and a33 (_ij = °ji) may be computed

from the definitions of the t i (Eqs (52) and (53)),

the linear error analysis of Section B. I. d. (i)

and given values of OAr, OAv, o ,. To obtain

the probability P that Eq (96) holds, Eqs (97) and

(98) are substituted into Eq (96) and the condition

for success is symmetrized by making the pre-

liminary change of variable x I : tl, x 2 : t2, x 3

= t 3 - I/2 (A - B). Then the criterion for success

becomes

-1/2 (A+ B)<x 3 - /x12+ x22 < x 3

+l x12 + x22 <_ 1/2 (A + B) (99)

where (x 1, x 2, x 3) has mean vector _1' g2" g3

- 1/2 (A - B) and unchanged variance-covariance

matrix _ .

The region in the (x 1, x 2, x 3) space is com-

posed of two conical segments, as shown in the

following sketch.

It is desired to integrate the distribution of

(Xl, x 2, x 3) over the region determined by Eq

(99). The resulting probability, analogous to

Eq (88) is the desired result. The upper and

lower limits analogous to Eq (90) are

U' 3 = 1/2 (A + B) - lXl 2 + x22

2L' 3 = -1/2 (A + B) + + x22
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u_= II/24A+B) 2-xI2 ,

L_ = - IZ/2 (A + B) 2 _ Xl 2 (i00)

u_ : 11_ (A + B). L_ ---i124A + B).

x
i

A+B

Circle lies in the

vertical plane, x 1 x 2

In this instance, the transformation of Eq (92)

to the variables (z 1, z 2, z 3) is given by

Xl = "i + Cll Zl

x2 = "2 + c21 Zl + c22 z2
41oi)

x3 = _3 - i/2 (A - B) + c31 z I + c32 z 2 + c33z 3

with the coefficients cij given explicitly by

ell = (all)1/2 = a21 = °31
• c21 ((_ii)17-_' c31 (C_l

I 2 _32 - c31 c21
c22 = a22 - c21 • c32 = c22

(102)

I 2 2c33 = _33 - c31 - c32

Introducing these c's into Eq (101) and the x's

from Eq 4101) into the relations L_ < x k <_ m_ (k =

1, 2, 3) yields, analogous to Eq 495),

U 3

L 3

= l_l__ I- "3 + Ac33 - c31 z I - c32
Z 2

L_

-14;i -_* ClIZl )2_- ("2-_'C2IZl -_- e2222)21

= .3-B-c31zI-o32z2

+{%+CllZl'2+4.2+c21zl+c22  '2]

U 2 =_-_-21-.2 - c21zl + Ii/4 (A+ B) 2

-(.i + Cll zi)2]I/21

L2 = I_
c22

- (Pl

U1 = 1-!--
Cll

1

L 1 = Cl 1

- "2 - c21 Zl

+ Cll Zl)_i/2}

I-.l + i/2 (A+ B)]

[-.i - i/2 (A+ B_ •

I/4(A + B) 2

4103)

Now the probability

U 1 U 2 U 3

- _ expF-i/2 (z12
i _L 2 °L 3 LP 1

+ z22 + z22 t dz 3 dz 2 dz 1

can be obtained from a suitable computational
routine.

Monte-Carlo method. Consider again the

pro___- probability P that a

multivariate normal variable lies in a region R.
The Monte-Carlo method may be used, for

example• in situations where the number of com-

ponents of the random variable is larger than

five (the routines previously described are no

longer applicable).

The method proceeds as follows. Select a

sample of size N of the random variable of

interest. Count the number N O of these sample

values which lie in the region R. The fraction

N0/N is an estimate of P.

The question arises: how to choose the sample

size N so as to estimate P with assigned precision.

An answer can be given if the problem is formu-

lated this way. Choose N large enough for the

probability that 1N0/N - PI < d to equal a for

preassigned d and a. Then if a "guess" for P is
available, choose

P(1 _ P) z 2
a

N = d_- (i04)

where z a is defined by

Z

i exp(-i/2 t 2) dt = a

Za

and is obtained from tables of the normal distri-

bution. If no "guess" for P is available,
2

Z

an upper bound on the choice of N is a
4d 2 "
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Thus, to estimate Pwithin 0. i with a proba-

bility of 0.95, a conservative choice for N is

(1.96) 2

i0)_ = 96.044 (0.

To estimate P to within 0.01 with a probability
of 0.95, N must be 9,604 at most. To estimate

P to within 0.01 with a probability of 0.95, if

there is reason to suppose that P is near 0.9,

Eq (104) yields

N = (0.9) (0. I) (1.96) 2 - 864.4
4 (0.01) 2

Thus, a reduction of almost 9000 in the sample

size necessary to meet a certain criterion has

been achieved by using additional information

known to the experimenter.

In conclusion, a remark should be made on

the usefulness of the Monte-Carlo method in

evaluating probabilities when the random variables

of interest are not necessarily normally distributed.

The estimate of the sample size required given

above does not depend on the normality of the
variables under consideration. It is valid no

matter what their distribution is. (The fact that

z in the formulas is obtained from tables of the
a

normal distribution is incidental. )

(4) Probability Analysis of Vehicle Position and

Velocity (Ref. I)

By means of the previously considered statis-

tical theories and the equations of Table 2, the

probability distribution of the position and velocity

of an orbiting vehicle can be determined at any
time. This section deals with a convenient method

of analysis for the problem. Let

represent the relation between the position and

velocity errors Pi and the orbit injection errors

qj. If the qj are normally and independently

distributed without biases, their multivariate

distribution is given by

6 _ I 1/2expl
f(ql' q2 .... q6) = i='i=l_l 2_1-2- /

Then the multivariate distribution of the trans-

formed errors is

8 (ql' q2 ..... q6 )

g (Pl' P2 ..... P6 ) = f (ql' q2 ..... q6 ) a(pl, P2 .... P6 )

(106)

The region g (Pl' P2 ..... P6 ) = constant is a six-

dimensional ellipsoidal surface of equal probability.

This time-varying hypersurface provides a con-

venient definition of the region of occurrence of

the vehicle position and velocity with given prob-
ability.

For example, consider the simple case of

only two orbit injection errors.

Pl = all ql + q12 q2

P2 = q21 ql + q22 q2

Then if

2 2

1I qI= 1 exp - g_----2+
f (ql' q2 ) 2_r ffql (_q2 _ql

J

1 Q2
1 -2

g (Pl' P2 ) = }_ (_ql °q2[all a22 - a12 a21_ e

(107)

where the quadratic form is

Q2=

-2

1 _ + a212 / Pl 2

(all a22 a12 a21)2 --!- (_ql Crq2

(a22_a_2+crqI al@l)Plan2 P2+ (_121 + On9 z

(108)

Since the coefficients a.. are functions of time,
aJ

the distribution changes with time. In this two-

variable case, g = constant defines an ellipse.

Equations (107) and (108) can be written in

simplified notation as

g(Pl' P2 ) : Kexpl-½(API2+ 2BPlP2+CP22_

If the axis of the Pl - P2 coordinate system is

rotated through an_angle ½ tan-1 _ , the
cross product term is eliminated! - C)

iIp_2 + _ 2]-]_ D2p- (109)
g (p[, p_) = K' e

where p[ and p_ are the new coordinates. Also,

D can be absorbed by defining new coordinates

Pi' = P{ and p_' = Dp_.

,, ,, K' I- 1 2 2_g(Pl' P2) = _)--exp _(p_' + p_ (110)

Again, variables can be changed to polar coor-

dinates so that the polar angle can be integrated

from 0 to 2a and the radius (1:l 2 = p,,2 + p_2) from

0 to R. The probability of a vehicle being within
R is then
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R2
2-

P (R) = 1 - e (Ill)

2_ K 1

because i) - 1 for the normalized distribution.

2. Er__ ror_Ana_l_ysis of Powered Trajectories

Typical trajectory sequences consist of al-

ternating powered and free-flight phases. The
final mission errors are functions of errors oc-

curring in all such phases. This section considers
the contribution of errors in tile powered phases

just as Section B. 1. considered errors in the

free-flight phases. If the powered phases are

short so that the impulse maneuver theories are

reasonably accurate, approximate analytic rela-

tions can be developed. However, tile increased

complexity of motion in powered flight generally

requires numerical analysis.

a. Impulse analysis

(1) General case

The equations describing addition of a vector

impulse dv are the laws of cosines and sines:

LY
fl = -6v2 + v2 + v'2 - 2vv' cos (_' - y) = 0

(i12)

f2 = 6v sin(+ v' sin (y' - 7) : 0 (113)

Symbols are consistent with previous notation and
are further' defined in the sketch. Errors in v'

and _,' are to be determined as functions of errors
in v, ),, e and 6v. From Eqs (112) and (113) the

error relationships, approximated by linear dif-
ferentials, can be expressed as follows.

-6v dt6v)+ v' d v' + vv' sin (y' - y) (dy' - dy)

and
- cos (y' - 7) (v d v' + v' d v) + v d v : 0

- sin( d[6v)- 6v cos e de+ sin (7' - 7) dr'

+ v' cos (y' - y) (d7' - d 7) = 0

Terms may be collected, and the resulting ex-

pressions solved by application of Cramer's rule

for the errors dr' and d¥' In this solution the
Jacobian

v' - v cos(7' - Y)

sin (7' - y)

vv' sin (7' - Y)

v' cos (y' - 7)

F_

: 2 v' Lv' cOS (r' - ?/) - v J

is useful. The results are

I I _ VV _ . 2 1

6v cos (y - _ - 7_ -sin (_" - 7

dr' = v' c_s-g_-'-z--y_ : g _ d(&,)

+ cos (y' - T) dv - v sin (y' - 9,) d(

dr ........... "'E _ ,] d(6v>

sin_' Z_2Z) dr+ i-i v cos(y' - _)] d_+ dy
V r _ -

In terms of (7' - )') or', in terms of e ,

6v v' d(6v) + 6v
dr' : -_+ v- r cos L- O cos_+ dv

-'v bvv_r sin E d_ (114)

v 5 v
d y' : sin ( (I(6\0 - ---:- sin ( dv

V

+ _ (6_ + v cox e) de + dy (115)
v ,_

(2) Nominally Tangentialhnpulses (c : O) (Ref. 2)

In many missions a velocity increment, 6v, is

added at the apogee of a coast period in a direction

nominally parallel to the existing coast velocity,

v. An attitude error, Ae, during the apogee

burning causes a nonlinear speed error in the

system, in addition to a speed error representing
a linear transformation of the other Gaussian

sources. The geometry is shown in the accompany-

ing sketch. The resulting speed error, Av 1, due

to this source is

Vertical

Direction of 6v

Direction of v _-A
Y

Av 1 = v + 5v _ l_ (5v) 2- + v 2 + 25v v cos A_

(116)

For small Ae, Eq (116) becomes

Av I _ 6v )22 [1; 6v) (llV)

whore terms up to second order have been
retained.

The /Xe in Eq (117) is actually composed of

two components in directions normal to v. These

are typically a yaw attitude error, A(y, and a

pitch attitude error, 5ep, as shown in the sketch.
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ThusEq(117)becomes

5v _A_y)2+ (A(p)21 (its)

To this must be added the Gaussian speed error,

AVn, clue to a linear transformation from the

other sources (see previous section). The total

speed error, Av, then becomes

Av : 6v 6,, _A(y )2 21+ (A(p) + /',v
2 (i+ _) n

(119)

The statistics of Eq (119) are non-Gaussian

thouah ",( ,5c Av ar'e Gaussian. It is again
' ,}' ' l ) ' in_

convenient to consider the space of &(y, &( p'

Av n which represents a trivariate normal density.

In this space, surfaces of constant Av are parab-
oloids of revolution parallel to tim axis Av as

n

shown in the sketch. An analogous procedure is

described in Section B. 1. d(3). Hence integration
of the trivariate normal distribution of .,5( /',(

y' p'

/',v within the paraboloid (from AV = --, to /',v)
n n

yields the probability that Av is less than some

specified value. Integration for different values

of Av yiehls the entire statistics of Av.

AV
n

r--/x v

A_

A(y

An interesting optimization theory is often

applicable, once the complete statistics of Av

are obtained. It may be desirable to modify the

nominal value of v in the trajectory such that it

is assured to any given probability (say 0. 997 or

30) that the magnitude of the resulting speed error

is less than Av 0, where it is desirable to minimize

Av 0. This might be the case for example in a

satellite which employs orbit corrections after

injection, where minimization of the speed error

at injection, Av0, minimizes the propulsion capa-

bility required in the payload. This optimization
is carried out as follows.

The cumulative distribution function P (Av) is

obtained as described above. The above optimiza-
tion requirement can be interpreted as a selection

of the minimum continuous span in Av over which

the P (Av) function changes by 0.997. Designation

of the center' of that span as the shift in nominal

injection speed would then complete the required
optimization.

P (£x v)

1.0

iv

The foregoing is easily carried out by choosing

a running variable Av 0 as a trial smaller extreme

of the 0.997 span of Av, and reading off in the

figure the associated span of Av which contains

the necessary 0. 997 change in P (Av). Plotting

as a continuous function of Av 0 the quantities,

half the span and the center of the span, permits

determination of the optimum operating point as

that vahe of Av 0 which has the minimum half

span. This is shown in the following sketch.

The corresponding change in the nominal injec-

tion speed and the 0.997 error in speed, Av0,

are determined from the figure for this optimum

&v 0.

Actual shift -7 Curve of trial shift- 7

from nominal in/ I from nominal in /

injection speed / injection speed [_

)

ial

/ IrT---- I ..... ha>f span

f _v 0 .

This optimization procedure for nonlinear

speed errors has been carried out for' equal
variances in £xe and A( and the results are

y p'

presented in Fig. 1. The reason that the optimiza-
tion procedure is useful is the skewed and biased

nature of the density function of Avgiven by Eq (11!)},

which is shown in Fig. 2. This suggests a shift

in nominal operating value of speed as was for-
mally carried out.
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The technique Eq (87) could have been em-

ployed as an alternative method of solution in

Eq (119). Note that y(&_), the density function

of _ in Eq (I19), is a Rayleigh distribution,

if the standard deviations of & _y and _A _p are

the same, _e0.

y(_e) =-2---- e

cr±_ 0

or

where

(A e )2

0 < A_ < _ (120)

f( /',_ )

0 <(A_)c _ (121)

k - 5v 2 (122)
1 + 5__v a_¢0

V

and where f(_ e) is the non-Oaussian part of

Eq (119). Hence, using Eqs (87) and (121) in

(119) yields _ (Av - 6)2

2a2v

_ 1 -K e np(£Xv) = _ e d5

0 I 2 ,fro2 v

n

(123)

Equation (123) can be expressed in terms of
tabulated functions:

p(Av) = density function of Av
2

e -k--- ½ _ k ' /(_Av n -

= k -R_ _-

where
(124)

fU
R(u) = exp(- t2[2) dt

-_ 2_

= a tabulated function

(125)

Also the cumulative distribution P(A v) can be

found by integrating Eq (124)

p(AV) = cumuiative distribution of AV

= R AV xp _
CTAV

n

• °Av Av[' (126)

b. General guidance error analysis (Ref. 2)

The guidance error analysis procedure to be
described is a universal one for satellite missions.

It can be applied to any type of trajectory, with

guidance provided by an arbitrary type of guidance

system, and with an arbitrary criterion employed
for error in final orbit.

The type of powered flight trajectory that can
be handled is perfectly general, although two or

three discrete burns, each foliowed by a coast

period, are the most common. The following

sketches show some typical trajectories. Continu-

ous low-thrust burning, characteristic of nuclear

stages, can also be accommodated within the error

analysis procedure. Also of arbitrary assignment

are the nominal orbit parameters at the end of

each burning phase.

(a) Injection into Arbitrary Orbit

Using a Coast Period Between Burns

I_au/mh _noui

OI DII

(b) He-entry from Orbit
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The error analysis procedure is capable of

treating any type of guidance system, whether it

be an inertial platform, a radio guidance system,

an open loop autopilot system, or combinations

thereof on the different stages.

Finally, the statistical quantities of interest

in the final orbit may be the elliptic elements (such

as eccentricity, period, etc.) or the band of alti-
tudes within which the orbit should be confined

according to some assigned statistical probability;

or the impact error associated with a re-entry

vehicle; or some other criterion.

Basically, the approach may be considered as

consisting of four steps:

(1) Determination of the B matrix which

relates the injection error vector X to

system error S

X =BS

(2) Determination of the covariance matrix

which contains error-interrelations and

is normalized to the one-sigma error

values.

(3) Determination of boundaries in Gaussian

space along which quantities of interest
are constant.

(4) Integration over this boundary (if one
variable is of interest)or over the inter-

sections of several boundaries (if several

variables are of interest).

(1) Determination of the B matrix

The linearity assumption is made that each of

the N statistically independent error sources pro-

duces a proportional error in each component of

the six-dimensional error veetor at end of powered

flight, X. Hence, there exists a 6 x N matrix B
which relates the N-dimensional vector error

source, S, to the six-dimensional vector, X. The

element B.. in this matrix is the partial derivative
tJ

of the ith component of X with respect to the one-

sigma value of the jth component of the error

source, S (thus each component of S is normalized

by its standard deviation for convenience, as defined

below). The assumption of linearity is very good

in nearly all cases. The notable exceptions and

method of treatment have been noted (Section B- l-c).

In the following analysis the basic error sources,

S, are assumed statistically independent and un-

biased. The above definition is stated explicitly
as

X = BS (127)

where each component S. is expressed in units of
l

its standard deviation, m. Table 4 shows the error
t

sources that usually are most significant for each

type of guidance system.

TABLE 4

Sources of Error for Various Guidance Systems

Guidance Inertial Platform Autopilot or Open

System Guidance System Radio Guidance System Loop Guidance System

Int e r hal
and

external

error

sources

Platform and component

initial alignment errors.

Gyro drift.

Accelerometer errors:

scale factor, bias, cross

coupling, etc.

Airborne computer errors,

Engine shutdown errors.

Errors in measurement

of position and velocity
coordinates due to basic

measurement devices and

due to propagation refrac-

tion through the medium.

I Ground based computer
errors.

Engine shutdown errors.

Initial alignment errors

of engine and inertial
elements.

Gyro drift.

Gyro torquing error,
due to power supply and

gyro itself.

Vehicle center of

gravity offset.

Accelerometer errors,

Propulsion system

errors: I and weight
sp

flow.

Engine shutdown errors.

Timing errors.
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Themethodin determinationoftheB matrix
is to takeeachindependenterror source,oneat a
time, andfind the six-dimensional error in X due

to this, thereby yielding one column in the 6 x N

matrix. This is done most expediently by using

the same digital computer program which has pre-

viously been used in determination of the complete

powered flight trajectory. N + 1 machine runs are

made using this program, each one carried out

from liftoff through each burning phase and coast

phase until the end of tbe last burning period. On

the first of these runs, all input conditions are

nominal, and, of course, X is zero. On the second

and each subsequent run, one input is perturbed,

that being the error source under consideration for

that run. As stated above, the amount of the per-

turbation is taken for convenience as the one-sigma

value. The difference from nominal of the result-

ant output is X, which is the desired column in the

B matrix, from Eq (127),

(2) Determination of covariance matrix, A

The vector X is a six-dimensional Gaussian

density function since each of its components is a
linear transformation of Gaussian error sources

from Eq (127). The complete statistics of X are

therefore given by the eovariance matrix, A, de-

fined by

A = E (X X T)

where X T is the transpose of the column vector

and E is the statistical expectation operator de-

fined by

co

[h(x_ = _ h(x) f(x) dx
E

- oo

where h (x) is any function of a variable of distri-

bution f(x). InsertingEq (127) in the equation for

A yields

A = E (BSSTB T) (128)

= BB T (129)

-- 6 x 6 matrix

In deriving Bq (130), the following fact was used.

E(SS T) = unit matrix (130)

This follows because of the statistical independence

of the error sources in S, and because of the way

B was defined in Eq (127)

In unusual eircun_stanees where the assump-

tions given for Eq (127) are invalid, the same

theory applies, but the expressions previously
developed have additional terms. Such a situation

might physically arise, for example, in a radio

guidance system, if uncertainty in refraction causes

a correlated (though unbiased) error in several

basic measurements such as range, angle and

their derivatives. The only change in the equations

derived in this section caused by such a correla-

tion between the components of S occurs in Eq

{129), which becomes

A = BE (ssT)B T (131)

where the matrix E- -(SS T) is no longer a unit matrix,

but contains the correlation coefficients as off-

diagonal terms. Equation (131) then becomes the

basic 6 x 6 matrix defining completely the statistics

at final burnout, with all other equations remaining
the same.

If an error source is biased and the value is

known (which is really necessary if it is to be in-

cluded in the error analysis) then the true system

error can be reduced by inserting a compensating

offset.

3. Error Analysis of Various Trajectory Sequences
(Ref: 2)

As noted in the previous sections, the error

analysis procedure generally requires machine com-

putation, although the transformation of errors in

free-flight can be expressed analytically. These

analytic expressions are useful, especially in cases
where the errors at end of first burning can also be

obtained analytically (for example, in a radio guid-
ance system). Thus, in these cases, the complete

error analysis may be carried out analytically with-
out machine computation.

Table 5 gives the in-plane errors for a fairly

general trajectory, which invokes only the usual

constraint that second burn occur at apogee of the
coast ellipse. These equations become greatly

simplified for a Hohmann transfer ellipse, as

shown in Table 6. Table 7 is the transformation

of errors in a nominally circular orbit. Table 8

gives out-of-plane errors.

The in-plane equations given in Tables 5, 6 and

7 are derived by taking first order perturbations

in the two basic equations of motion in a central

force field given below. These are:

r 0 1 - cos @f cos('Y 0 + Cf)
-- ---- 4-

rf k 0 c_ _0 COS _0

1 + e sin(q_ - c_)
2

k 0 cos 70

(132)
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2 3
k 0 r 0 cos

t *
v 0

mf

_0 J II+esin(¢ - _)l-2d<b,

0

(133)

where the zero subscript refers to conditions at

beginning of coast, and the f subscript refers to

quantities at apogee.

TAB LE 5

In-Plane Errors at Injection in Terms of Errors

Introduced During Each of Two Burns Separated

by a Coast Time, t*

Subscript 0 represents beginning of coast

Subscript c represents end of coast

Subscript f represents injection

ZXn represents pitch attitude error in second burn

by = velocity increment in second burn

p = gravitational constant times mass of earth

k = ratio of twice kinetic to potential energy at
burnout

1. Altitude Error

Art = (O_--0) t Ar0 + (8_v0) t AVo +

rf _+ rf (i-co,%)]
[ ro k 0 cos "_Oj

rf rf i - cos ¢f

t v0 r0 X0 cos ,l 0

., r, 1
t r 0 c°s 2 ,t 0 L----_0tan /_0 - sinqb

2. Velocity Error

__ Ov Ar0+ (_v0) t AV 0 8V t(%), +%)

(%), ,

. Or

t v c rf t
(continued)

TABLE 5 (continued)

[3. FlightPath Angle

6_f = ;c _ 0 Y Ar 0 + + 8"¢
I L t

+ A + vf (z_n- AVf)

(__rYo) .- v 0 sin_f Vo i coseft Vcr 0 k 0 cos YO Vc kO c°s ?0

- cos (_0 + _f)l a¢_(_O) t

I_O0 4 sin 2 Cf
= - (1 - e) 2 3 kl ÷ k2

(_-ro) t Xoro c°s2 YO

2k 0 (k 0er0- 1) cos 2 "/0 kl

(_VVYo) _ 2 sinCf v0 m cos9 f
t Vc _00c°s _0 Vc L_o

at-cos (_0 +*f (_-VVo)t

I% 8 sin 2 Cf(__V0) t,- (1 _ e)2 3 kl +k____oSin_____% k2

4k0 (k0ev 0- 1) cos 2 "_0 k31

(continued)

* Tables 5 to 8 are analytic expressions for deter-

mining B matrix. The only constraint on the tra-

jectory is that the end of coast be apogee of the

transfer ellipse. Gyro reference is assumed for

apogee burn.
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k I

TABLE 5 (continued)

k 2

k 3

k 4

v°Isin f in °t= Vcc k0 c°s2 0--- + cos (_0 + %5f

v0 k 0 cos v0 cos (_0 + _f

=%5f

= (1 - e) 2 I3 tan Y0kl

4 cos 2Y 0 sin 2 %5f sin 2 %5f

+2(- --2 + ) k2
k 0 sm 2, 0 sin-_ 0

k 0 (2 - k 0) sin 2_ 0 1- e k3

W
+

2

d_f

.f
0

d%5

[1 +e sin (¢ - a)_ 2

e _Sine cos%5f --/--2
- --_-- 1 ._f + 1 -e k41 -e

*f

S
0

e cos (_ - _) d#

[1 + e sin (%5- a)_ 3-

11 1 _f)2 1)-2-1=_ (1 - e cos (1 -e

%5f

sin (qb - a) d%5

Jo [l+esin(¢-")] 3

1 1 sin _f

=2 _ (1 - e sin%sf)2

1 2e 2 + 1 sin(Pf

+2 (1 - e 2)2 (1--e cos %sf)

3
R e

+ e2)2 k4(l-

*f

= _n (,f
0

-1
tan

- a) = 2
1 -e

(l l"e _)_tan

TABLE 6

In-Plane Errors at Injection in Terms of Errors
Introduced During Each of Two Burns Separated

by a Coast Time, t0 _0 = 0° (Hohmann Transfer)

/Xrf Ar 0 rf Av___O0 rf
rf- r 0 (2 +r 0) +2 v0 (1 + _0)

Ar0 2

AVf --" - r---_- % V 0 -AV 0 (2 +r_)÷&(Sv)

Ar 0 AV0) vc
= 4 AT0_k5( 0k__0 v0A%sf % +__ + &tr f

+ 6t

* The terms encircled are eliminated when a hori-
zon scanner reference is used for apogee.

TAB LE 7

Coast Phase Transformation of In-Plane Initial

Errors &r 0, Av 0, ix'/0Into Final Errors 5rf, 6vf,

6_f, 6%5f After Traversing an Angle %5fin a

Nominally Cireuiar Orbit

Arf

ro ]

Avf

v 0

A_f

Acf

- cos (pf 2 (1 - cos %5f) - sin%sf

-(l-cos_f)

- sin %5f

- 3(pf+2 sin_f

(- l+2cosCf) sinCf

- 2 sin _f cos %5f

- 3 ¢f + 4 sin %5f 2 ( 1 - cos %5f]

Ar 0

r 0

Av 0

v 0

lA _0
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TABLE 8

Coast Phase Transformation

for Out-of-Plane Errors

Out-of-plane error a and d_ in terms of initial

errors, s0, ¢0 and Cf, t_ and a are defined in

Section B.

, oo 0d L-o]
4. Ballistic Trajectory Error Analysis (Ref. 3)

The ground range over a nonrotating earth

achieved by a ballistic missile is given by

sin YO cos VO

pg = R tan-I 2
-J_- - cos

2

r 0 v 0

2

- -- cos YO

i-'_o _re cos 2

ro Vo _0 Vo

(134)

where subscript 0 indicates a cutoff condition, and
subscript f indicates a final condition, and R is

the radius of the earth, as shown in the accom-

panying sketch. Differentiation of Eq (134) yields

the following error parttMs.

IApogee

fl f'_--I "_" _'_\\

\\

v°}I/ _ _/point f
Cutoff_t_. _ , zany f_nal

Og_

X i _Spherieal earth,

no rotation

Y 0 ----

igr

= 2 K I K 2
8 v 0

(135)

r 0

4

= ¥ Ve (2 r0% KI oos0[iv0) _ 1)

2

Vc ro c°s2 YO)+(%) (1-3 rf

v 2

+ r_ c°s2 "_ 2 - cos

+ sin2 20 e°s2 YO l>
I

" ) 2 -I-

r° _,o+_( )( r°- t
rf

(136)

cos . 2= sin XO "f Vc 2

_Vo/ J kL-Vo 2 COS

+ sin2 "t 0 COS 2 "t@ -1

( ,>)r00 2 +(Vc) (_K 2 -- 1 + 1 - rf cos Y0 \v0/

t 2r0 2sin _0 1-_ cos

rf

-1
2

_0+2(velto_

I)_r _ c (,2cos__0)+°°s2
2 -I

•{[(_-olVC2 - cos 2 "¢0J'l + sin2 _0 c°s2 V0 }

r(v f

+-- cos Y0 +2 _ r0 -
rf \v0/ krf

1 IVc 2 _ cos2 Y0 + sin2 ¥0 c°s2 _0

-1

• r0 v c r 0

- _ c°s2 _0 + 2

rf rff (137)
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where

v = circular orbit velocity at cutoff altitude.
C

These error sensitivities are plotted in Figs. 3

through 17. The quantity [<I' which arises from

the first term (cutoff to apogee term) of Eq (134),

and which appears as the first term of Eq (136)

and as a factor of Eq (135), is plotted in Figs. 3

and 4. The multiplying factor K 2 is shown in

Figs. 5 and 6. The second term of Eq (136)

(that is, the part of the error partial a pg. arising
r 0

during that portion of the trajectory between

apogee and the final point) is given by Figs. 7,

8 and 9. The first term of _7 g (cutoff to apogee)

is shown in Figs. 10 and 11. The second term is

shown in Figs. i0 through 15. Figures 16 and 17

are useful auxiliary graphs in using Figs. 3

through 15. The error sensitivities are also

given (Ref. 4} in Figs. 18 and 19 as functions of

range and Fig. 20 gives flight time as a function

of range.

C. SPACE VEHICLE GUIDANCF,

TECHNIQUES (Ref. 2)

Once the requirements imposed by the mis-

sion on the guidance system have been appraised

by the methods of Section B, a guidance philosophy

may be selected to meet that requirement.

Guidance may be defined as the processes of

measurement, data extraction and smoothing,

computation and control which are required to

assure that a space vehicle reaches a desired

destination from a given launch point. For the

present purposes, the destination may be a point

for injection into an arbitrary parkh3g orbil from

a direct ascent trajectory to a point in space,

with the proper six-initial conditions to place
the vehicle on a coast ellipse (for a iransfer ma-

neuver), parabola or hyperbola to establish a

lunar or interplanetary trajectory, or some other
final-value condition. Thus, it is customary to

classify the problem by:

(I) Imunch guidance

(2) Midcourse guidance

(3) Terminal guidance

and to further classify the guidance problem by

the form of the mechanization and constraints,
as;

(1) Radio supervised (maximum radar range,

minimum elevation angle, required look-
angles for anienna patlerns, maximum

slewing rates, etc.).

(2) Inertial (platform stability, linear[ty,

threshold levels and dynamic range,

integration accuracy, etc.).

(3) Radio-inertial (combination systems

where position may be derived from

radar with inherent radar constraints,

and velocity from inertial measurement

with inherent inertial system constraints).

The literature is now becoming extensive on

these more specialized problems of theory and

mechanization. It is nearly impossible within

tlne span of the handbook to do more than suggest

different approaches to tlne guidance problem

insofar as specific mechanizations are concerned.

The chief emphasis ,,viii be on providing the rots-

shin analyst with general methods of guidance

analysis applicable to any class of guidance sys-
lem.

1. Formulation of Guidance l':_alions

The formulation of the guidance equations for

tile launch guidance phase may take the form of,

(1) explicit guidance, (2) delta guidance, or

(3) Q-guidanCeo

b:xplieil guidance. The reqtli Fed velocity

vector, v , is obtained in closed lorm as a tune-
r

tion of position and time. The velocity-to-he-

gained, vg , is then obtained as

v = v - v ( 13 8)
g r

where v is the instantaneous velocity of the ve-
hicle. The vehicle is then steered in an efficient

manner unit1 v = 0, at which time the engines
g

are shut off.

Delt_a_g_uidance. In delta guidance, the re-
quired velocity vector is approximated by a

functional expansion about the nominal expected

burnout position and time (x n, Yn' Zn' in) as

Vr =Vrn +A(x n-x) +B(Yn-v)+C'(Zn-Z)

+ I_(tn- t) + second order terms {13!I)

where Vrn, A, B, C, Dare constant vectors and

x, y, z denote the platlorm coordinate system.
,qeveral second-order di lference terms such as

(x n-x) (Zn- z) may. be required to obtain the

desired accuracy The advantage of the above

method is that only simple arithmetic operations

rather than the square roots and divisions re-

quired for explicit guidance need be performed

by the airborne digital comtm_er. The disadvant-

ages result from the larger, number of constants

that must be precalculated and inserted into the

onboard digital computer.

Qzguida!)ee.. Another me/hod of guidance is

tel'erred to as Q-_uictanee. This method _ives
the velocity-to-be-gained direcily by integr'ation
of

3

• i i i i

Vg = AI - Q i vg (14(1)

i
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wherei, j =1, 2, 3 refer to x, y and z eompo-

nentsj Art are the components of thrust-drag ac-

celeration as measured by the accelerometers;
i

and the matrix Qj is defined as

Ov i

Qji = _ r
Ox j

In explicit and delta guidance, it is necessary to
perform a gravity computation, which is not

required for Q-guidance. The only guidance con-
stants required for Q-guidance are the components

of the Q-matrix and three initial values for v .
g

The components of the Q-matrix will contain about

10 trajectory-dependent constants. The disadvant-

age of Q-guidance is that the computer does not

evaluate instantaneous position or velocity. These

quantities are useful in orienting the body attitude

during the coast period and for resetting the digital

computer prior to the later burning periods.

2. Launch Guidance

a. Radio launch guidance

A radio guidance mechanization of a space-

craft steering loop may proceed along the most

general lines as shown in the sketch where the

guidance complexity is placed in the ground

equipment. An entire tracking network may be
involved in gathering the tracking data. Depend-

ing on the nature of the tracking data (range-only,
range-azimuth-elevation, angle-only) and the

number of participating stations, an initial and

then precision orbit is calculated by, say, an

IBM 7990 computerj the actual orbit is compared

to the desired orbit, and pitch and yaw steering

commands or discrete commands are generated

and sent to the control system of the spacecraft
for thrust vector control.

_ Control I I Missile U Velocity

system ] '1dynamics H vector I I

Error 1
I Tracking I

signal for [ data I

I corrective l
[ maneu_'er Precision

} i Data I J _°rbiti Least II Orbit /
I---=----t:x.l-,-------4 squares _ determ- _-'--

/ li._ I 'Y' I fit II i.atio_/

!
Pre-calc I

desired |

orbi_ |

A single semispecial purpose guidance computer

located at the launch site may be schematically

represented as in Fig. 210

The missile dynamics for either a symmetric or

nonsymmetric shape are given, together with all

equations of motion reduced to a form suitable

for digital computer calculation. Finally, a func-

tional block diagram is shown in Fig. 22 for a

combination CW and pulse radio guidance system.
One of the most severe constraints in a radio-

inertial system is due to the antenna radiation

pattern (see Fig. 23) and signal sensitivities of

the spacecraft receivers. One way of overcoming

such problems (though introducing other perhaps
more flexible constraints) is to consider the

usual inertial guidance mechanization.

b. Inertial launch guidance (Ref. 5)

To accomplish inertial navigation in a region

containing gravity fields some method must be

used for calculating gravity acceleration. If the

path of the vehicle can be accurately predicted,

the effects of gravity can be precalculated. In

this case, guidance during flight would be done
in terms of thrust acceleration and its time

integrals onIy. As the path of a specific vehicle

becomes difficult to predict (relative to the ac-

curacy requirement), it becomes necessary to

make a gravity computation during flight.

The following sketch shows, with an exag-

gerated scale, the powered flight trajectory of

a space vehicle. A rectangular coordinate sys-

tem with origin in the vicinity of the trajectory
and with the y-axis vertical can be used to ex-

press the components of gravity relative to a
free-fall reference frame at the center of the

earth as follows:

2
x -go r0 x

gx =-gr IxY+zY+(ro +y)2t3]_ - (141)

2
Y +r0 -g0r0 (Y +r0)

gy g r Ix2 i. z_ t_ (to .t_ y_l 3_2

(142)

Y

11" g--_gy

/, x

ro !

_lll I

I
I
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Thegzterm is similar to gx' butfor simplic-
ity will beomittedhere. x canbetakenin the
nominalplaneof thetrajectoryandtheproblem
consideredin twodimensions.Theseequations
arenonlinearandtheir mechanizationrequires
considerablecomputercomplexity.Simpleline-
ar approximationswhicharevalidneartheorigin
of coordinatesare

go
gx= r0 x (143)

gy=- g0(1- i2w_0'). (144)

The acceleration equations in component form are

>:" = atx + gx (145)

= + gy (146)_,t aty

Block diagrams for the solution of these linear

equations are shown in Fig. 24. The x channel
has negative feedback and two integrations and

thus has a sinusoidal response to an input dis-

turbance. The y channel has positive feedback

and an input disturbance leads to a diverging

value of y.

The effect of the approximation in the gravity

computer can, of course, be calculated for a given

trajectory. Additional terms to include the non-

spherical gravity field of the earth can be included

as necessary. If the acceleration free-fall refer-
ence frame is located in a satellite, for example,

then the gravity components which give the dif-

ference in gravity between the location of the ac-
celerometer and the reference frame, would dif-

fer from those given in Eqs (141) and (142). Be-

cause the satellite moves through the earth's

gravity field, the gravity components would vary
with time.

The effect of the gravity computation upon posi-

tion and velocity error buildup caused by acceler-
orneter or initial condition errors is of consider-

able interest. It can be investigated analytically

in terms of perturbation equations of the form

0gx Ax + ogx
/,, k" = Aatx + Ag x = Aatx + _ff_ _- Ay

(147)

A)" = Aaty+ Agy = Aaty+ _-ax Ax+ _y Ay

(148)

The differential coefficients are functions of

space which can be obtained from Eqs (141) and

(142). They should be evaluated along the unper-

turbed path of the vehicle, ttowever, this leads
to differential equations with time varying coef-

ficients which cannot be solved in closed form.

For flights in a region of a few hundred miles

breadth, the coefficients can be evaluated at one

point in the vicinity of the trajectory with adequate

accuracy for the purposes here. This gives the

following equations for the perturbation in position

caused by thrust acceleration perturbation or ac-
celerometer error.

go
A{¢" + r0 Ax = Aatx (149)

A y" - 2g0 Ay : Aaty. (150)
r 0

The physical meaning of these equations is

easy to see. For example, a positive error in

vertical position leads to a calculated value of

gravity acceleration which is too small and thus
to a calculated value of true acceleration which

is too large. This in turn integrates into an even

larger positive position error.

The solution to Eqs (149) and (150) for constant

values of thrust acceleration perturbations (ac-
celerometer bias or zero offset) are

AX : _0_- O 1 - COS _ t (151)

Ay = _ cosh t - (152)
I r 0

The terms for initial condition perturbations are

similar to these. Near" the surface of the earth,

the sinusoidal oscillation has a period of about 84

rain, that is,

21r !_r0/g 0 _ 84 min.

Position errors caused by accelerometer er-
rors other than a constant bias can be calculated

by well known methods. An offset in the attitude
reference will cause a cross coupling error, thus

Aatx = ¢laty, where /3 is the attitude reference er-

ror. A gyro drift rate thus gives an increasing

position error.

These perturbations or error equations illus-

trate a basic limitation of inertial guidance for

long times of flight, namely, that errors in the
vertical direction increase exponentially with time.

However, errors in the horizontal direction caused

by accelerometers are oscillatory with a period
of 84 min. This makes practical two-dimensional

inertial systems for' aircraft and ships which can

employ altimeters to measure altitudes. For

flight times less than about 10 min, Eqs (151) and
(152) can be approximated by the simple equations

t 2

Ax = &atx _-; A_ = Aatxt (153)

t 2

Ay = Aaty T ; A¢ = Aaty t (154)

which are those that would be obtained by ignoring

the feedback error from the gravity calculation.

They would also be those obtained for navigation

in a constant gravity field.

Associated with the concept of this guidance is

that of the standard or reference trajectory. Such
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atrajectoryis onewhicha standardor nominal
missilewouldfollowunderstandardor nominal
aerodynamicconditions.Thepathof anyspeci-
fic missile should follow the standard trajectory

quite closely. In general, the specific paths will

be statistically distributed about the standard
which in some sense will be a mean o[" tim ctistri-

bution.

A schematic of a stcerin_ computer is given

in Fig. 25• The angle comn]anded by the pitch

programmer is compared with the giinba[ pitch

angle to give a pitcl_ steering comnmnd to the

missile control system. The ovecal] guidance

loop is illustrated in Fig• 25 by the feedback from

the missile control system through missile dy-
namics to the inertial measurement unit.

Lateral and pitch steering having been accom-

plished, the remaining problem is to terminate
the missile thrust at the proper time so that the

spacecraft will hit the intended aiming point. The
proper combination of burnout values can be ob-

tained by considering the effects on target miss
of small changes in the horizontal and vertical

components of position and velocity• To express

this analytically, the. range of the missile is ex-

panded as a function of position and velocity com-

ponents about the standard burnout point.

p-ps =
OP (x + apa-_ - Xs) _ (Y- Ys)

ap (k - k s) + ap+ a_ ay (5"- }s)+

(155)

• ° .

p designates range, the subscript s designates

standard conditions, and the partial derivative

coefficients are evaluated at the standard burnout

point, @p/Ox =-C x, etc. A computer which con-

tinuously calculates the downrange miss at the

aiming point is shown in Fig. 26. Prior to the

start of the flight, vahes of the standard burnout

conditions, Xs, etc., are fed into the computer

along with values of the coefficients, Cx, etc.,

which are calculated for the particular range de-

sired. At some zero time for guidance (which

should be within a few seconds of the actual lift-

off time of the missile) the accelerometers are

connected to the computer and torquing of the

gyros at earth rate is stopped. Position and ve-

locity components relative to the launch point

then appear in the channels indicated in the figure

and the computer calculates the downrange miss,

M r . Early in the flight, the calculated value will

be grossly in error because only linear terms

are used in the expansion. Near burnout, how-

ever, the computation will be quite accurate.

The thrust of the missile is terminated when the

computed miss becomes zero. This will always

occur" because the missile is flying toward the

impact point with an increasing velocity.

The inertial guidance scheme should be evalu-
ated from several standpoints. For example, the

need for the gravity computer should be investi-

gated. If the actual missile flight is sufficiently

elose to the nominal flight, the effect of gravity

can be precalculated with stffficient accuracy and
no gravity computer is necessary. On the other

hand, and especially for extreme accuracy, addi-

tional terms in the gravity expansion might be
necessary. If the variation in missile thrust is

large, higher order terms might be needed in the

expansion of the motor shuto[l_ Fq (155). Refine-

merits in the guidance scheme wouhi include

nlcans of compensation for time of flight varia-

tions. The design of the system shoulci include

ate error analysis of all of the principal compo-

nents so that a proper balance in design com-

plcxit 3' can be obtained. For example, high ac-

curacy in the cutoff expansion in meaningless if

the accelcromctcrs are low accuracy devices.

A thorough error analysis including the effects

of inertial component tolerances is presented in
Ref. 6.

3. Midcourse Guidance

Guidance principles applied to launch guidance
have been discussed in the earlier sections. The

spacecraft may be assumed to travel along a free
flight path to its destination without further appli-

cation of thrust or guidance. This type of guid-

ance is accurate enough in general for establish-

ing earth satellite orbits, and possibly in more

refined operations. However, for precise navi-

gation to the moon, to establish satellite orbits

about the moon, or for interplanetary orbits Enid-

course and terminal guidance will be needed.

Midcourse corrections for lunar trajectories are

considered in detail in the companion work, Lu-
nar" Flight Handbook, Ref. 7. Differential cor-

rections are considered in Chapter" V1 of this
manual.

D. DESIGN OF ATTITUDE CONTROL
SYSTEMS FOR EARTH SATELLITES

(Ref. a)

The design of a spacecraft attitude control

system is a complex problem. The specific

stabilization and orientation requirements must

be met, and compatibility with other spacecraft

subsystems must be ensured. The early space-

craft, which were designed for long term oper-

ation, were spin stabilized. More stringent re-
quirements of present experimental, communi-

cations, interception or reconnaissance missions

have demanded more precise or more complex

control. The purpose of this part of the Handbook

is to present several important problems which

must receive attention in the design of the atti-

tude control system. Tradeoff and systems prob-

lems, considerations involved in a particular

choice of an attitude control system, and design

data which may be helpful for preliminary calcu-
lations are presented. The scope of the section

is, by and large, limited to consideration of the

attitude control of earth-orbiting satellites.

The designer is confronted with the problem

of choosing among a number of possible solutions

for a particular attitude control system• Since

no attitude control system can be broadly classed

as optimal for every mission, a range of the pos-

sible control system selections must be reviewed

in the preliminary design as each relates to both

the required control system performance and the

design of other subsystems. Often, the number

of solutions can be quickly narrowed to one or two
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logicalchoices. Thedesignermustdefinethe
flight sequence,particularmodesof control,and
controllaws,evaluatetheeffectsof disturbing
forcesdurin_operation,andassessthec()ntrol
systemreliability to provideanoptimumc_rrec-
tiontechniquefor fine positionandtimecontrol.

Toaidthedesignerandmissionanalystin this
task, theltandbooktreatsimpo'.'tantsystemcon-
siderationsof themissionandcontrolspecifica-
tions;methodsof obtainingcontrolorientation;
conirol system sensors and control mod_,s. ()n_'

typical satellite configuration is shown in the fol-
lowing sketch.

ORBIT VELOCITY

,Y

PITCH

i°

YAW

Mission and Control Configuration

ROLL

The purpose of this section is to survey the

various types of spacecraft attitude control sys-

tems which might bu used for various missions.
It is important to begin with a g_meral discussion

of the broad specifications which are important

in the preliminary design. Because control sys-

tem specifications for the spacecraft often differ
depending on the mission, this section treats only

broad requirements. Once the mission is deter-

mined, tile designer can look at various control

schemes _:ov the particular payload or range of

payloads that can be launched by the available
boasters. This means that for some Elissions,

studies involving thE. tradcoff between ').,)osier

capability, weight of payload in a particulal' orbit
or set of orbits, costs, reliability, the basic Fe-

quirements .-)f the mission, and otlwr system il;-

terrelations are rt,quircd. Poh]ting LtC('LII CLOy,

maximum attitude rates, system lifetime, reli-

ability, allowable weight, cost, state of hard-

ware development, orbital requirements, boost

environment, etc., are typical inputs to the con-

trol system design.

a. Mission

A limited set of i_ssible missions will indi-

cate the range of similarities and differences of

probable attitude control system requirements.

Broa:lly, the missions have been categorized into

experimental spacecraft, reconnaissance satel-
lites, communication satellites and missions re-

quiring orbital docking.

(i) Experimental spacecraft. The satellites

and intc_.pYat_:tary pl'c_es la-En-c]led to date have

wide and varied stabilization requirements. Sat-

ellites containing equipment for detailed solar or

stellar observations may need to stabilize with

respect to the sun or star under observation to

within a very few seconds of arc with very low

rates (Orbiting Astronomical Observatory). To

obtain information con(erning the earth's mag-

netic field, cosmic radiation, and the like, a

satellite may need stabilization within the limits

of only 1° or 2_ (Orbiting GeophysicalObserva-

tory). Spacecraft for investigating various as-

pects of tile moon, Venus and Mars, may require

control daring a landing operation as well as

stabilization during space transit. Ti_e mid-

course orientation requirements may be similar

to those of a satellite, but as the vehicle ap-

proaches the planet, separate terminal control

and guidance schemes are generally required.

The lifetime of experimental satellites must be

considered.

(2) Reconnaissance satellite. Two types of

vehicles to perform reconnaissance missions

may be distinguished. Tile first is similar to

tile earth-pointing experimental satellite in that
the mission function is to obtain pictures or data

concerning earth topography or activities on the

earth. Basically, this system will have control
requirements which will be a direct function of

the resolution capability of the reconnaissance

equipment aboard: good absolute pointing accu-

racy, and very low pointing error rates are re-

quired. A second type of reconnaissance vehicle

is one for inspection in ,orbit of other satellites

and space vehicles. Such inspection will probably

require accurate orientation with respect to some

other object, like the earth or sun.

(3) Communication satellite. Various forms

of control systems will be required to meet the

needs of varying orbits, synchronism require-

ments and antenna pointing. An oriented antenna

may increase the antenna gain by as much as 10

db. This could simplify the communication sys-

tem at the expense of additional control system

complexity. The number of communication sat-

ellites depends on the orbit and coverage require-
ments. While more low altitude satellites are

required for the same (:overage as higher altitude

satellites, tile booster capability will allow more

to be launched at lower cost, or" alternatively,

lower cost may be achieved through the use of

simpler, more reliable boosters. The altitude

atso affects the control system design through
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altitude-dependentenvironmentalcharacteristics
suchasaerodynamics,gravitygradient,radiation
andotherphenomena.Thenumberof satellites
withsynchronizedorbitswhichrequiretheaddi-
tionalcomplexityof a syncht'onizingo1"indexing
systemmustbecomparedwith those required

in "random" orbits where such a system is not

required. For example, 18 satellites in a 6-hour

synchronized circular orbit are required for con-

tinuous coverage between New York and Paris,

whereas approximately 21 are required in "ran-
dora" or'bits for 99% coverage.

(4) Orbital clocking. Studies have indicated

that the t)hysieal mating of two satellites in orbit

is feasible. This system would permit the trans-

fer of fuel to provide additional velocity to one of

the vehicles (target vehicle) in orbit, essentially

yichling an increase in booster capability. The

actual mechanics and dynamics of the docking

process and the problems of terminal guidance
will require detailed attention by the mission

analyst. For search, preterminal and terminal

modes, the attitude control may require an earth

or sun reference in addition to the target vehicle
reference.

b. Control configuration

The limitations on size and shape which arise

from the limited booster capabilities immediately
constrain the configuration. The shape and partic-

ularly the moments of inertia are significant. If,
fox' example, the spacecraft is to be spin stabil-

ize(t, then for" internal energy dissipation to pro-
vide stable damping, the moment of inertia about

the desired spin axis nxust be larger than that
about the other two axes. If, however, the vehi-

cle is to be a low altitude, fully oriented satellite,

the inertia configuration will determine whether

or not the spacecraft is stable with respect to the

torques generated by the earth's gravity field. In

fact, the designer may choose confiyurations so
that there is sufficient control moment to stabilize

the vehicle from this effect alone.

If the canter of aerodynamic pressure does not

coincide with the spacecraft's center of gravity,

there may be large aerodynamic overturning mo-
ments for the low altitude satellite which can af-

fect the control system design and methods for

generating eountertorques. Principal axis/con-

trol axis alignment, difference in inertias, may

be significant in the spacecraft dynamic response.

In the design of momentum storage and mass ex-

pulsion systems, minimizing the moments of iner-

tia about the axes will help reduce the weight of

the momentum storage and mass expulsion device.

Unfortunately, the other' subsystems, particularly

the power supply and temperature control, may

have a predominant effect on the configuration.

(1) Power supply system. It is anticipated

that power supplies for earth satellites requiring

long life will continue to use the sun's energy to

provide primary power. Rechargeable batteries

will be provided to supply the power during peri-

ods of eclip:se. The solar array size must meet
the electrical power requirements of the system

and recharge the batteries during periods of sun-

light.

The power supply efficiency is maximum if

the control system is capable of orienting the
faces containing the solar" cells toward the sun

throughout the lifetime of the satellite--except,

of course, during periods of eclipse (see Chapter
XIII). If, however, a spin stabilized satellite is

chosen, a maximum of only 25% of this power can

be realized for" a spherical satellite covered with

solar cells in any orbit. Two particular spin

axis orientations will provide more efficiency:
(1) where the spin axis is continually aligned along

the sun line, the efficiency is equivalent to that of

the oriented array; and (2) where the spin axis is

oriented normal to the sun line, an efficiency of
approximately 325 of that of the fully oriented
array is achieved.

The cyclic life of the batteries is affected by

several things, including temperature, depth of

discharge and height of charge. The control sys-

tent response characteristics during acquisition

of the sun can effectively reduce the depth of dis-

charge required for a particular orbit through

minimizing the time required for the solar array

to reacquire the sun after an eclipse. The longer"
this takes, the more the batteries will be dis-

charged and the less time there will be for re-

charge before entering eclipse again. This prob-

lem is particularly significant in orbits with

eclipse periods which exist for a significant period
of time.

During orbits with extremely long periods of

sunlight compared to eclipse time, it may be de-
sirable to include in the solar array control laws

a provision for charge-control to prevent over-

charging the battery. Since both continuous sun

and carth orientation are impossible without an

extra degree of freedom (except for special orbits

and during particular periods in each orbit) sys-

tems which do not have a rotatable solar array

have a reduced efficiency. However, if the power

requirements are not extreme, it may be more
reliable to have an unoriented rather than oriented

array. This is an important tradeoff study to per-
form.

The electrical power obtained from rotatable

solar arrays must be transmitted from the array
to the body. The control system, as will be
shown later, can be used to eliminate the need

for providing complete rotational freedom which

would suggest the need of slip-rings for power
transmission. Control laws (:an bc used which

limit the required solar array travel to ±,90 ° .

There are a number of other" possible array
configurations for which specific control laws

can be generated. The problems associated with

continuous but very slow drives may indicate that

stepping the array or providing a set of multiple-

fixed positions is an easier and more reliable ap-
proach.

(2) Temperature control. A number of active

and passive temperature control systems are

possible for satellite application. One system

which has a great effect on both the control sys-
tem design and the confiauration is one in which

the main body is attitude controlled, so that the

two surfaces perpendicular to solar array axis
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never see the sun. The temperature is controlled

by insulating those four surfaces which sometime

during the satellite lifetime will see the sun, thus

preventing heat absorption. The other two sur-

faces contain shutters which are actuated to con-

trol the emissivity or radiation of internally

generated heat into free space. These shutters

will not be exposed to direct sunlight for long

periods of time if the control system is working

properly. If the satellite is earth oriented, sun

control about the axis along the local vertical

(yaw) will prevent direct sunlight from impinging
on these surfaces suggesting four design con-

siderations for the control system. These are:

(i) Quick acquisition must be made to the

sun orientation following separation

from the boost vehicle to avoid tong

periods of unoriented attitude.

(2) Special methods of control may be re-

quired by the temperature control sys-

tems. The time required to acquire

the sun when the spacecraft emerges

from the eclipse must be controlled.

The effect of low control gain during

periods of high noon (i. e., a condition
obtained when the sun is in or nearly

in the orbit plane) must be reviewed to

keep from exposing these surfaces to

the sun for long periods of time.

(3) Any other modes such as rotation out
of the required plane for velocity cor-
rections must take into consideration

the possible exposure of these surfaces.

(4) The sun-pointing accuracy during

periods of normal control must satisfy

the temperature requirements.

(3) Orbit control system. For many earth

oriented satellites, a system to provide change

in the satellite's velocity during its time in orbit

will be necessary. The indexing into a syn-
chronous orbit of a communication satellite, the

terminal guidance of a docking satellite, or the

deboost of a vehicle for re-entry, are examples

of systems which will utilize a propulsion system

to change the spacecraft velocity while in orbit.

The control system must be capable of properly

reorienting the vehicle in space so the nozzle or

rocket thrust will have the correct spatial attitude

when the rocket is fired. Furthermore, since

the thrust of this rocket will probably not pass

exactly through the spacecraft center' of gravity,

an overturning moment will occur. Sufficient

control authority must be available to correct
for these moments. In addition, most orbit con-

trol systems will have a fine or precise vernier

correction and/or a station-keeping mode that

could easily use the control system nozzles and

obtain energy from the attitude control system.

Some simplification in hardware design will be

obtained through integration of these systems.

(4) Data link. Earth satellites will be re-

quire--e_ to communicate with earth based stations.

For many systems specific antenna pointing is

required. Anterma gain and beamwidth, com-

munication security, ground receiver flexibility

and coverage are areas which affect the system

design. For earth satellites, pointing accuracy

of a few degrees is sufficient to retain most of

the power in the transmitted signal. With proper

orientation of antennas for interplanetary probes,

increased data transmission rate may be possible.

The data link, or communication system, can

also be used to command special modes of con-

trol. For example, through analysis of telem-

etry data it may be learned that a component has

failed. The communications system may then

send a command to switch in a redundant com-

ponent.

(5) Control configuration environment and

rel_a_-iTff_-e environment in wTai_i t_h_tude

_tr-Y-0q system will be required to operate is of

extreme importance. Control and disturbance

torque generation and sensing requirements are

discussed later. The principal considerations

which affect the control system reliability and

equipment design may be itemized as follows:

Boost environment. The control system in

the satellite must meet the requirement that it

be operable after" boost into orbit. During the

first seconds of boost, the high accelerations

(say 10 g), vibration, and heat environment

impose severe restrictions on all components.

Vacuum. The pressure at 100 naut mi or

185 km is approximately 10 -amm Hg, decreasing

rapidly to 10 -10 mm at 1000 naut mi (1850 km) and

-13
to i0 mm at 100,000 naut mi (18,500 kin). In
vacuum, there is no resistance to sublimation and

evaporation of molecules of surface materials.

There is a tendency for systems to "out-gas, "

creating additional control system torques and re-

ducing the supply required for control torque gen-

eration, Substances with a low vapor pressure

should be used to reduce the evaporation. The

positive elimination or proper sealing of rubbing

surfaces can reduce the problem to negligible pro-

portions. As an example, slip rings for trans-

ferring power from the solar array to the main

body can be eliminated by employing special yaw

and solar array control laws (described later)

which limit the solar array travel to :_90 °. If

motor-driven sensors, inertial wheels, and servos

are used, they must be sealed to prevent the evapo-

ration of lubricants from reducing the lifetime of

the bearings.

Micrometeoroids. The average control sys-

tem torque c_g-ec--l--gy this effect is small and

can generally be ignored in comparison with

other torques experienced in space, Chapter II

considers the quantity and energy distribution of
micrometeoroids in space. Two additional con-

siderations are the possible puncture of the gas

tank by a large micrometeoroid, and the general

effect of bombardment on control system sensors

and other components which are directly exposed.

Particle radiation. Shielding is necessary to

protect such components or surfaces as are ex-

posed to the bombardment of high energy protons

and neutrons. Radiation damage can occur to

sun sensors using solar cells, horizon scanners

utilizing susceptible optical and detector ma-
terials, solid-state electronics, etc. Radiation

damage depends on orbit altitude and inclination
and must he evaluated.
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Other considerations. Other environmental

consi-l-d-era_i_n6]_%igge ultraviolet rays which
serve only to increase the rate of sublimation;

X-rays and gamrna rays which are only signifi-

cant during solar' storms and can be essentially

eliminated by the same mechanisms that protect

against high energy protons and neutrons; and

cosmic flux which appears to be of insignificant
consequence in ionization.

Reliability. The degradation of system re-
liability -dTe- to space environment is difficult to

predict. The use of failure rate data to assess

the reliability of the control system is an im-

portant design tool and warrants further consid-

eration. The number of components in tile pre-

liminary control configuration can usually be
estimated. These, estimates then form the basis

for a reliability study.

Assume that the failure of a single component

will cause the entire system to fail and that the

extrapolation from a laboratory environment to

an operating space environment can be performed

realistically. Even in the event of errors in

extrapolation, the relative reliability of different

design approaches can still be evaluated.

The failure rate data for some commonly used
components are given in Table 9. These data re-

fer to a laboratory enviromnent with an ambient

temperature of 30 ° C and applied electrical

stresses of approximately 25% of the rated. In

the period between "infant mortality" and "wear

out, " most components experience a constant

percentage random failure rate, 5_ . The prob-
e

ability of a system operating successfully for

time, t 1, is defined by,

-)it 1
P - e (156)

S

where

k = composite system failure rate in

space' environed1 ent

t 1 = length of operating time.

TABLE 9

Some Commonly Used Failure Rates

Component

Silicon transistors

Silicon diodes

Resistors (film)

Pots (composition)

Capacitors (paper)
Capacitors (solid

tantalum)

Trans former / winding

(low voltage)

Relays (DPI)T)
Motors and tachometers

(ac)

Magnetic amplifiers

Control windings

Inherent Laboratory
Failure Hate

Per 109 ttours

153

51

8
38

3

4O

10

296

200

30

10

The failure rate data is often expressed in
units of frits which are defined as the number of

failures in 109 hr. If there is a requirement for

a i-year operation and the system in space en-

vironment is assumed to be degraded over the

laboratory environment by a factor of 3, the

probability of one year's successful operation is
then

felts x 3 x 8760 hours

P1 year = 109

(157)

2. Control Orientation Methods

This and the succeeding sections define some

of the methods, techniques, mad problems as-

sociated with the desigm of the attitude control

orientation and stabilization system. A most

important choice in the early' design is tile method
of obtaining attitude control torques. This

section provides brief discussions of the important

methods for providing control orb,ntation.

Each method is specifically concerned with

the effects of space environment and other cl_anges
of momentum the spacecraft may experience. It

is important to remember the fundamental dif-

ferences between torques which are constant in

inertial space, always resulting in additional

momentum to the system, and torques which are

constant with respect to body coordinates and are

in many cases cyclic in inertial space. Such

cyclic torques do not necessarily require the re-

moval of momentum from the system.

The following items and combinations of them

are briefly discussed: (1) methods such as in-
ertial orientation (spin stabilization); (2) the

manipulation of the naturalforces of space, such

as gravity gradient, solar pressure, earth mag-

netic field, and aerodynamics; (3) the merits of

internal rotating momentum storage and mass

expulsion. A choice from among tile several

possible approaches is generally necessary quite

early in the design. Special modes, such as
separation rate control, acquisition, eclipse, in-

dexing, terminal guidance, etc., may dictate

special control requirements. These modes are

discussed separately in a later section.

a, Inertial orientation

The simplest means of obtaining control is to

spin the vehicle about a known axis. If this axis

is either the minimum or maximum principal
axis of inertia, the momentum imparted by the

spin rate will cause (without the influence of
external disturbances) the spin axis to remain

fixed in inertial space. If there is no need to

orient a particular axis or antenna on the vehicle

to the earth and if sufficient energy can he ob-

tained from the sun for electrical power, this

method is the simplest. Pioneer V, Explorer VI,
Courier, and others have been stabilized in such

a manner. The final orientation of the spin axis

in space will be tile inertial orientation which

exists at the time the spacecraft is spun. If

there is initial momentum not along the spin axis,

the system is stable only if the spin axis is also

the axis of maximum inertia. Mercury ring
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dampersaresometimesutilizedto removethe
wobblewhichoccursdueto separationratesand
dynamicunbalanceeffects.

There are several possible control orientations

that might be required. Some of the more usual

ones are sun orientation and stellar orientation:

(1) Sun orientation. It is possible to orient

the spin axis To_Ya-_t-_e sun. This orientation

gives the same power efficiency as an oriented

solar array but it could complicate a communi-

cation system beeamse of the time-de.pendent

orientation of a body-fixed antenna with respect to

the earth. To maintain the spin axis orientation

to the sun will require precession of the spin

axis at the rate of one revolution per year plus

that required to compensate for the regression of

the orbit line of nodes. A very simple attitude

system can be used to obtain this orientation, if

the pointing requirements are not too stringent.

(2) Orbit plane orientation. A spin stabilized

satellite with its spin axis normal to the orbit

plane can be used for a number of applications,

for example, satellites required to photograph or

otherwise survey the earth's surface and com-

munication satellites where the antenna provides

a toroidal pattern about the spin axis. If the

earth-sun line remains normal to the orbit plane,

then a high efficiency solar array can be mounted

normal to the spin co, is. If the inclination of the

orbital plane to the ecliptic plane is small, solar

cells mounted on a cylindrical surface about the

spin axis will operate for the satellite lifetime but
provide a maximum power per cell of only 1/_ x

the power per cell that would be achieved with cells

in a comparable fully oriented ;array. If the orbit

is unrestricted, then on the average each solar'

cell on the spinning vehicle will provide only 1/4

the power per cell of cells in the comparable fully
oriented array.

(3) Other orientations. Spin stabilized satel-

lites can conceivably be employed to maintain
other orientations than those discussed above. Such

tasks as pointing telescopes at fixed stars can

easily be performed; however, such requirements
are often associated with scientific missions where

data transmission considerations require earth
oriented antennas for communication, an.I an

oriented solar array for power. These auxiliary

tasks cannot easily be performed with a spin
stabilized satellite.

Spin stabilization does not appear to be a

satisfactory control scheme for earth orientation

of an axis of an earth orbiting satellite. Either

large torques { large energ2¢ expenditure) are re-

quired to maintain this spin axis rotation, or

internal moving parts such as reaction wheels are

required. Torque impulse, if applied properly,

will require an energy expenditure of f[_ per
revolution where H is the total momentum of Lhe

satellite and _ is the average satellite orbital rate.

If wheels are used, they must be capable or" storing

momentum at least equal to the spin momentum;

for this reason they introduce significant stability

problems and require complex implementation.

Other problems, such as achieving the proper

initial orientation and devices for damping the

nutation must be considered. The spatter'aft de-

sign yielding maximum flexibility will not, for

most cases, rely on spin momentum for stabiliza-
tion and orientation.

A symmetric body spinning at an angular

velocity, P0' about either' maximum or minimum

principal axes of inertia will, in the absence of

any external moments, maintain its initial orienta-

tion constant in inertial space. If the body total

angular momentum vector' initially coincides with

the spin axis, and if an impulse angular momentmn

is now added normal to the spin axis, the body

spin axis will precess about the new system total

angular momentum vector. The rigid body axes

are defined in the, sketch. The body is considered

to be symmetrical about the spin axis.

SPiN % v

4X15

The motion of the satellite spinning at a con-

stant spin rate in the absence of any external
torques will generally be perio'dic about the spin

axis. To simplify the solution of the equations

of motion, a complex angular velocity, COn, is
defined as

_n = COx _ !._ . (158')Y

Substituting this equation into Euler's equations of

motion for a rigid body, the solution which defines

the frequency of angular nutation is obtained in

body coordinates. This means if the total body

angular momentum, tit, is about some other axis

than the spin axis, the spin axis will experience

nutation (free precession) about the total momen-

tum vector. The following sketch shows the trace

of the tip of the body spin axis under such an in-
fluence.

HS#

SPIN AXIS

Z

/_ -- " "_..Hr

H T _l

%..._ /"_--SP_N AXIS

/ _ --_"/ MOTION

A point on tim nutating body rotates at a fre-

quency, given by

(159)
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whereI is themomentof inertiaaboutthespinz
axisandI is themomentof inertia about a trans-

x

verse axis. t,'or an inertial observer watching a

fixed point on the body, this frequency is simply

I z PO
fti = _V- for small O. (160)

X

The half angle cone, 0, for tile motion ok z is

given by

I z P0
tan 0 = [

x n
(tEit)

Passive dampers dissipate energy to r'emovv the

nutation (but do not change the systcm angular

momentum) causing the z-axis to bc aligned with

It t. Precession of thc vehicle angular mon_entun/

ve(tor is obtuined by application of a moment im-

pulse applied hernial to thc nlotllellttun V(tCIOl'o

Any nutation that ['(,suits h'om II/Ol]?enlull] V(!ctoI'

rcorientation can bt _ damped passively by several

schemes and it can also be prevented by proper

application of another impulse also normal to the
z-axis.

If an impulse is applied normal to the spin

axis to cause a pF(_c{'ssion, tbcn thc application

of another ntoment impulse (equal to the first

and also normal to the spin axis), after the body

has rotated through an angle co given b.y

1
x

* = i-- ,T
z

radians (162)

will eliminate the nutation and will have caused

the z-axis to process through an angle of 20.

Energy considerations will show that, for passive

dampin_ schemes, the ll]otn(![]_IIf incrtia about

the spirt axis must bc _r'catcr t}mn that about a
transverse axis.

The advantaKes and disadvantages of' spin
stabilization as contrasted with control of non-

spin confil/urations arc presented beh)w.

Advantages. (1) l:ixcd im_rtial orientation

witb ]imitcd accuracy call be achieved with a

completely passixe s),stem; (2) accurate orienta-

tion with respect to a fixed star or slowly rotat-

ing line of sight can generally be achicved with a

fairly simple, lightweight system; and (3) most

distm'banccs including torques from velocity cor-

rection jet nlisalignments have only a small effect

on the accul'acy of a spin stabilized body.

l)isadvantages. (i) Only one axis can he con-

trolled; _ a complex control system is required

to point the spin axis ahmg a rapidly rotating line
of desired orientation; and (3) spin speed control

may be required on systems where disturbance

to,'ques may cause large changes in the spin mo-

mentum ok the system.

b. Use of natural forces of space environment

This section discusses the major sources of

torques which will be expc1'ienced by tile vehicle

during its lifetime in orbit, These torques muy

be hai'll('ssed for c()n}rol purposL's oi' tl't'il_l'(]

simply as disturbing il][]LIOll(.t'S l'Ol' %%flit:It c(mtrol

nlolnonts fl'Olll other SOI//'Ct'S IIILIS[ St' [)l'i}\ J(ti,d.

FOUl" ulaj()l' S(ILU'(eN of l()l'qale \\]lieli Ill]Ell })t_

USed for ec)lltFol [kl'e SC)IZiF Fttt]iCit]t)t] pl't',_Stl]'(',

gravity .-radient, earth' s lnagnctic ficht nml aero-

dynamics. Gravity gradient, aerod571an_ics nntl
earth's magnetic fiehl have their _reatesl el'feet

at low altitudes; solar radiation In'cssuFe is

largely independent of altitude, and (hu)ends on

the spacecraft surface area far:in;, _ _he skit?.

(1) SOil1' radiation [(_wqtlt. U'h(' tt)rqu(' ¢luc
1o solai_-rad'iatioi_Dr('s._m'e I'}_l'_:_'s u_tin_ (m a

satellite vchicle is sJ_nifJctiut cmd must be eva]-
uated. 'Flit! combined CquutJoIIN llecessal'}: to

express these tor'ques in t}lc g('Itrl'Ck] equations

of motion of the vehicle urc highly nonlineur.

The purpose here will l)c to discuss briefly the

cause of solar radiation t(n'(lUe and its effect on

spin stabilized spaccuruft and satellites wit}l
active attitude control orielltal]un in an earth-

SUit referent( _.

Every satellite vehicle is composed of a

number of distinct surfaces, cach with particular

surface reflective properties and characteFistius.
The bombardment of these surfaces by photons

emanating from the sun will create foyers on the

spacecraft. The magnitude and direction of thcse

forces at'(? determined by the reflective proper-
tics of the surface. If the center of radiation

pr(_ssurc through which these forces act is not
coitlcidctlt with the ve}licl__, center of mass, then

a torque acting on the vehit le will be developed.

This torque may be of sufficient ms an/rude to

al'fcct the control system design.

The radiation power in the vicinity of tile

earth is i.!)4 cal/cm2-min corresponding to u

pressure of 9.4 x 10 -8 psi (4.48 x 10 -6 n/m 2)

for complete absorption. In preliminary design

it is necessary to calculate an upper bound on tht#

radiation torque in order to determim _ the space-

craft momentum storage requirements for' contrul

system design.

The effect of the solar radiation torque on u

spin stabilized satellite depends on the orienttLti_m

of the spin axis with respect to the carttl-sun line

and the vehicle projected area facing the sun.

The force parallel to tile spin axis during one
spin cycle will have no net effect on the vehicle.

That force perpendicular to the spin axis can

create precession of the spacecraft if it does

not [)ass through the center of mass. The nature

of tile momentum change will depend on lhe orbit.

For example, in a polar orbit (where there is no

orbit plane regression) the net monlentum caused

by this torque will average to zero m one year.

1,'or a fully oriented satellite with sun-earth

orientation the torques will depend on the control
laws and the inclination of the orbit with respect

to the sun. Where tile sun lies in the plane of

the orbit, the torques in two axes will be cyclic

in inertial space except for any rectification
because of the constraint of earth orientation.

(:(msid(u' the example where tlle solar radiation

torques are duc solely to a solar array, t_s shown

in the follo\_in_ sketch.
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The radiation force acts through the center of

pressure (CP) and creates constant moments

about the z- and x-body axes, M 1 and M 2 respec-

tively. If the z-axis is continuously oriented
toward the earth and the sun is perpendicular to

the orbit plane, the torques are cyclic m inertial

space, For the nun in the orbit plane the moment
is constant in inertial space, A plot of these

torques in inertial space for orbits possessing

inclination with respect to the ,_tli3 Of _0 ° and O °

is slnJwn in tile following sketches.

The solar radiation to_'que may also be used

to provide useful control system torques. It has

been t)roposed to equil) the ,_t)acecraft with a large

weather-vane type of rcficctive saiI arid control

tilt' vehicle by actuating this sail to create control

torqu¢'s. Such a scheme is diffic.uit to implement

and requires special control during eclipse and

nol)_e i'orz_ of nlomenttl_ stora/2e during periods

when control torques about required axes cannot

be obtained. Figure 27 presents the torque from
solar radiation as a function of area and radiation

I)l'essure _e\:el" al'lil ['or tots]. ;d)sol'i)tio[L

TORQUE M_ ......

M 2 -

-M 2 _

-M I

MZ i

/7<'...,.o
.,.,o

M I ;

M 2"

-M 2-

M I -

NOON

90 ¢80

(2) Gravi)ziradient. The earth's ,gravitational

potential _ aries with altitude. For this lC:.Lsoll that

center of gravity and the center of mLt,sS of a sate]-

lit(> are not exactly coincident. IJl_lc, ss the J'Ol'{'('

of hravity, at)plied at the center of gravit>, acts

along a line passing throuRh the custer of mass,

a torque tendin< to rotate the satellite p, iil r(,sult.

This tor'qu(' can be employed to stabilize tt satcl-

lilt, with respect to the earth's grLtxitL_tilm_d field.

The ,2uavitational torque may repres(,Ht :i disttH'l)-

ing input wtdct_ illtlst be l)vel't()llle b.y the ._atcllitc

control system.

The force due to _ravity on a unit mass can be

expressed in terms of the negative gradient of the

gravitational potential as

t,-:-
where

: the magnitude of F, a radius vector
fi'ol-a the eart}]_s center to the unit

[I1U.SS

tilt, product of the universal gr'avita-
tional constant and tim mass of tile

earth

-/_/r - the gravitational potential, a

representation sufficiently accurate

for the purpose here.

The torque M. tending to rotate the satellite about

its c(;ntc'r of mass is tilurl

£t : - 0 x V,-r,/-"_ drn (i04)

where p is a radius vector from the satellite

center of muss to the differential mass dm and

the integi'ation includes a]l nlass of the satellite.

Fox' conditions wimre p is very small with respect

to r, a eonditiou always satisfied for earth satel-

lites, the preceding integral expression for torque

can be evaluated to 3_ield

Mgx 3U ..... k') (Iyy -
r0 3 (Ur" j) (u v"

Izz)
(165)

M a. • i) 2) (Izz lxx)3 (Ur (ur" - .'.'
gy r 0

M .... 3_// (u " i) J) (Ixx Iyy)
gz r0 3 ' (Ur " " -

(166)

(IGT)

whcI'e

M

arid

gx gy gz

i, j,k

Lit,, 1' 0

Ixx, lyy,

: unit vectors along salel]ite

principal axes of inertia

:'unit vector fur and ma£nitude
of radius vec'tor from tile center

of the earth to the satellite

center of mass, respectively

1 = mojnKnts of inertia about
zz

i, j, k respectively

Igxatmination of these torque equatiol_s shows that

a]] thvee torque comlxlnents will be zero when

u is a]igned with a prmcipal axis of inertia.
1"

lloxtcvcr, a st.ablc tOFqUP-[F('e orientation will

exist OI113 r Wht'n lhe princilJal axis with nlinimun_



momentof inertia is alignedwithu. Complete
r

stable orientation is possible only for the above
condition when, in addition, the axis of maximum

moment of inertia is aligned perpendicular to the

satellite orbit plane. Gravity gradient torques

provide the vertical orientation of the axis of

minimum moment of inertia and result in a satel-

lite rotation of the orbit rate. Gyroscopic action

tends to orient the axis of maximum moment of

inertia perpendicular to the orbit plane and thus

along the angular rotation vector.

To establish more clearly the effects of gravity
gradient on a satellite it is convenient to consider

the satellite in a circular orbit shown in the fol-

lowing sketch. If all error angles are small, then

the torque components due to gravity gradient are

I v

"_ ro

M = -3WO 2 (Iyy - Izz) ¢ (169)
gx

M = -3w02 (Ixx - Izz) 0 (170)
gy

M : 0 (171)
gz

where w 0 is the orbit rate. The time rate of

change of angular momentum of the system is

equal to the applied torque and for small error

angles, the angular velocity vector _, is given by

=T($ + 7(6 - + ($ + %,)
(172)

The linearized equations of motion for the system

become

Ixx ;" + 4w02 (Iyy - Izz) _ = 0 (173)

lyy _)"+ 3_02 (Ixx - Izz) 0 = 0
(174)

Izz 9" + _02 (Iyy - Ixx) 0 = O (175)

where cross-coupling terms have been neglected.

An undamped motion will occur about the
orientation where all three error angles are zero

> I > In order to stabilize a satellite
if Iyy xx Izz"

i_y use of gravity gradient torque some auxiliary

damping system is required. Such damping can

be provided by reaction wheels driven from
sensors within the satellite.

A more attractive scheme is to provide the

necessary damping by passive means such as
body flexure, liquid dampers, or passive inter-

actions with the earth's magnetic field. Un-

fortunately, such passive techniques are not yet

completely understood, and at present their de-

sign}, is difficult unless very small damping factors
can be tolerated.

The limitations of the usefulness of gravity
gradient torque for stablizing a satellite with

respect to local vertical and the orbit plane are:

(i> Gravity gradient torques decrease
with altitude while some disturbance

torques (notably solar radiation pres-

sure torques) arc invariant with alti-

tude, thus it is difficult to design high

altitude satellites to operate primarily

with gravity gradient stabilization.

(2) Orbit eccentricity introduces disturb-

ances in the gravity gradient control

which preclude the use of this type of
control for highly eccentric orbits.

(3) At low altitudes aerodynamic torques

are encountered which greatly com-

plicate the design of a gravity gradient
controlled satellite.

(4) Satellite requirements such as solar

arrays to collect solar energy, com-

munication antenna placement, booms

for experiments, and restrictions on

configuration for compatibility with the

boost vehicle may so constrain the

satellite configuration that gravity

gradient stabilization cannot be achieved.

(5) Highly accurate orientation is difficult
to achieve since attitude errors must

be developed to provide gravity gradient

torques to counter disturbance torques.

Gravity gradient torques become disturbance

torques when other than local vertical orientation

is desired, or when control is accomplished pri-

marily with other techniques such as gas expul-

sion systems operated from a horizon scanner.

In the latter case, gravity gradient torques will

generally constitute system disturbances even

when the desired orientation is apparently the

stable gravity gradient orientation. The active

control system will always attempt to align with

respect to the control axes, which will coincide

with the principal axes of inertia only in the case
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of perfectalignment.Furthermore,if asolar
arraythatrotateswithrespectto thesatellite
properis usedto generate electrical energy, the

principal axis of inertia will rotate with respect

to the control axes and an additional system dis-
turbance will result.

(3) Earth's magnetic field. The magnetic

field of the earth can be u-_-d-in conjunction with

magnetic rods or current carrying coils to provide

control torques. The carth's magnetic field has
already been used with magnetic rod arrays to

provide "despin systems" on Transit 1B anti 2A

satellites. It is now evident that a complete con-

trol system is feasible based on obtaining control

moments from the energizing of satellite-fixed,

current-carrying coils. For lower altitudes, the

torque obtained from the coils can offset the ef-

fects of disturbance torques without large expendi-

tures of power or extremely weighty coils. For

designs utilizing other torquing schemes it is

imperative that care be taken to reduce the mag-

netic moment of the spacecraft so that magneti-

(:all), induced disturbance torques are not signifi-
cant.

All the factors contributin_ to the earth's

magnetic field are not well understood, but it is
clear that for satellites greater than 100 mi above

the surface of the earth, circulating currents in

the atmosphere and surface field irregularities

do not significantly affect the approximation of a

field which will be produced by assuming a simple

magnetic dipole at the center of the earth.

The axis of this dipole, which best repr{ sents

the magnetic field, is skewed at an angle of ap-

proximately 18 ° with respect to the earth's spin

axis. The North Magnetic Pole is at approxi-

mately 70 ° N Latitude, 97 ° W Longitude. The

South Magnetic Pole is at approximately 73.5 ° S

Latitude and 155 ° E Longitude. This means that

the axis of the dipole, and hence the field, pre-
tosses around the earth's spin axis. This pre-

cession is significant and means that only in

orbits which are synchronous with respect to the
earth's spin will the effects of the magnetic fiehl

be the same during successive orbits or sets of
orbits (depending on the synchronous period).

Only in a 24-hour orbit which contains the dipole
is it impossible to generate torques for complete

three-axis control. In general, the field will

vary constantly with respect to system axes. In

any one day (due to the field's precession about
the carthfs spin axis) it appears possible to gen-

erate control torques about all of the required

control axes. These torques may not be available

at the instant they are required, suggesting the

requirement for momentun_ storage. Further,

the magnitude of the field is different on each

successive orbit, deI)cnding on the altitude, in-

clination, eccentricity, time of launch, point of

injection, control axis orientation (control laws)

etc. Knowledge of the field magnitude and direc-

tion is essential to the proper energizing of coils

and must be supplied either by computation or

measurement. The data essential to the pz'clim-

inary designer is the magnitude of the field as a

function of altitude and variations typical of those

whicll will be experienced in the particular orbit.

Figure 28 shows the total magnetic fieht as a

tuner|on of altitude for the dipole representation.

A current carrying coil in the rnagnetic field tends

to assumca position that will result in the largest

possible flux through it in a positive sense. That
is, the force V on an element of wire in a flux

field, B, is given by

_: = iJlx ff (176)

or a coil _'rt_oSC center is along the spacecraft

z-axis wou_ld cause the spacecraft to experience

a torque, M in dyne-centimeters of
iri

2

C

N'l m - --f(],--n (u" B + u B x) (177)x y y ,

whel'e

u and u : unit vectors along x and y

x Y spacecraft axes respectively

r : lhe radius of the coil in eenti-
C

II]Utt'US

: the ctlrl,erl| in al[Jpg, l'es

: the flm< density in gauss

n : tile ntunbei" of turns.

It is interesting 1o ln_l(, that 0. 1 gauss actin_
normal to a 10-tart] coil of No. 14 (standar_l

household wiving) copper wire 1 ft in (1),2} nl) radi-

Us (weight less than 1 lb (4.4 newtons) without sup-
pouts) when enet't{ized with I w will produce a

-5 -5
torque approximately 5.8 x 10 it-lb. (7.9 x 10

m-newtons) This is potentially an extremely at-

tuactive torque for' control. This torque is about
an order of magnitude, above that anticipated for

eithec solar radiation or gravity gradient with

reasonable design practices. The magnitude of the

con[eel touque obtainable /'or' u coil with a l-it

(i).3 rn) l';_diu_ _ver the n_aKnelic (,(tu:d(_r i_ ph_tte(l

in l"iK. 28 as ;_ function of altitude.

Them. are s-me intel't sting tradeoff studies

between weight, power, wire size, and the use of

materials that can be considered. For example,

for a circular coil lie, torque in a constant field

is equivalent to

rl, orqu e : kl p1/2\¥1/2 [tp-t/2 (178)

k i : vonstant of proportionality (i : 1, 2,3)

P : appli( d power

_ = weight of the ('oil

R : radius of the coil

# = relative resistivity of tile material,

The most siRnifieant inerease in torque is ob-

tained with lar,_er radius coils. Lari4er coils

of the sam{' siz{, _ire with tilt: san'le power show

W : k 2 i{

T : k 3 1{ 3/2 .
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A kn(nvlud_{_ of t}w variations of the c;_rth's

ma_n(,tic field along th{ or'bit is hnpot'tani. Th{

combination of nodal Pc#ucssion, dipole axis I}ru -
{'Pssion, _md oH)it period moans that the flu× will

saPy uach rc<ohttion and is diffcrcnt fronl tim{ to

tim{,, except roy those that hay{ a period whi{,h is

multiple of the earth's spin Patu. The vaPiations

of the fh.tx dcnsit> in an iuct'tial coordinate system
apt plottc{I as u, function of {lint Cot" orbit inc]in_t-

tio[]S of 0 ° , :;0 o , (_()a t[llCt !)0 ° foF IWO conscULI[iVC

oPbits of 400 hill_it n]i (741 kin) hi Fi_. 9D. The

{nuptial coordinat{_ system tot these plots h_ls the

x-axis along the earth-sun lint ni th{' vcu'na]

cquinux, the z-i{xis essentially a]on_ thu positivc

earth spin vector, an{I the .y axis t{} f{}Pn] [hi ui_h{-

hart(h,(1 set. To sec the cffuctivcncss of contP{}I,

th{ tomp{}ncnt /)f flux {]cnsity a]on_ the {qlrthms
local vcPtical is l)lottcd as a £umtion {}f tim{ fop

the 400-haul mi oPbil in Fi_. 80.

}cop t}/{' [)ttt'p{.}scs of c&(lculati{)n, the (a('th_s
fiuld can bc simply CXl)r{ ss{<l in {{q'lnS of tilt'

i£xia] and noi'i_[lal contl)oncilt t'('on] the cal'thrs

magnetic {titx)h_. Tit{, equations at'{,

fiaxhd : 0.308 (1 - 3 cos 2 6).... 3 --- (t 7{_)
(P/H)

ltnormal = 0. 4{51 sin 2 6..... ,T (180)
(r/_)

W]IC I'C

II xia ] tit;{] [InoFm 8[ - th{' componcnts {}f fir,hi

intensity in {}wPstcds

6 - lhc Ulu4lc bctwc(q] the eaPtilPs ma_ncti{'

dil}oic axis un(l the FaciiLIs vector to the
s&t(']lit (

I" : the radius vcct{}r lo th{' saltqlitc from

t}l{! (()ntcr of tilt, {Kltth in {,cntizn(,t{,rs

I{ = th(, radius of the caPth (6. 371 x 108 tin)

If th(' {ti[}olc is ali_n(_(] along 1he caPth's spin

axi S (a I'CU sonttblc a,_Stll]] pth(l] foF pt'C] ill) ina('y

uidctilations), then Ill{, latitude, I_, is cqua[ to

(90 6) ). Figm'c 31 shows the total ma_ncti{,
2 2 1/2

fichl ([taxia j + llnormal ) its it fkalction of

latitu(h, for this assumption.

5omc of th{, limitations and t:i}nsi(]oPations on

tht US('['LIIncsS of ('al'thTs mi_l]ctic l'i{qd for stabil-
izin_ a sat{ llitc at'{':

(1) Nine(, the tot'qlw gcncPatcd is always

aboLtt an axis p{,Pp(,n{lit:ulaP to thc
earth's flchl, only two axes can bc

controll(,d at once. It is ncccss&t'y to
a{ld {lcvi{'t,s such as inc]'tia fl.ywhccls

or _vros to st{lFu the lllOtni'ntIAlllalono
th{ axis which cannot IJc controlh'{]

tlnti] th(' spa(!{'('t'afl t'cai,ht,s an or'bit

posi[ioli wht'l'{? thc n(olllt'tltLin/ ll]ay [)C

magn{'ticadl5_ tru, nsfcvrc{t from thtd axis.

(2) Th(' magnitude {it' Ill{, (.()tit Y{/] t()Pqu{,
IlltlSl [)C _l'('ilti_t" |)Kill thc 81111] of t]lc

inturnal and {xtt,l'na[ (]islkn'[)alXc(,

lot'qu(,s. It is nol difficult to achieve

fair13 sianificant control toPquus al

altitu{lcs up to L0,000 mi. (16,{}00 kin}

(3) The cal'ih's fi{'ld in bo{iy cool'{tinatcs

is {'oniintla]]v chan_ing, ln-fligilt com-
pulalion bas('(l {in this ficld must b('

pcl'formcd or' tilt? {]irctli{}n of th{, fichI

must t)c sensed in ord{u' t{} {ict{,rminc

p(X}l)(?l' 'Ctll'I'(ql{ fxlll('l'llS rcqtliF(,{t b3;

the coils. This might l)c don{, usin_

nla_n/'iiiIl]t_{Cl'S as nm{Ml/{qi{, field sen

sops anti primacy ol'i{'ntation signals
obtainc{I from {*aPth h)ca] vcPtical scn-

Si}I'S_ Still St'IIS(}I'8_ O(' 8{kl]' IFi/t'I<t'I'S

an{] C)l }l{'r s.

(4) Th{' stability of a system using body-

fix{'d {'oils in the {<H'th's tnLtgtl(q£c

fich] is {lU{,stionabh, bccatlsc {}f lh('

difficult 3 imposc{t by lh{' inh{,r(,n{

cPoss _{lUl}]ing l{)l'(tll(,S till{' It) {}l{* /tcliOl]

of th{' magn(,tic ficid {)n {he coil. CuP-

Pent call.sing Pods oP sheets ma 5, pro-
vide one solution. AnothcP possible

solution wouht bc to use the magn{,tic
field to ill{hi(:{ 21lOll]('lltLll]l in a ct)ntPo_ic{]

wa 5' by pPovi{lin_ cdd,y current dainl)hl K

l(/ 111{" illomcrltunl whc('ls. UnfortLlnat(,l,v

1}/(' ai_(OLIl][ Of 21]onlontLl[]l imparted to

the body by this mclhod is, fop pl'acti{,al

purposes, quit{- low.

(4) A('Pod2namic torques. The eaPth satcllit{,

in a low altitff{TJ 6]:LTt, oT _vlth a low altitude t}c,,i-

act, will {'x[icl'i{_!n{:(, acPodynamic fO('CCS (hli'ing
its lJfctimc. The Hat(l('c of t}ICSC rOt'COS, dc[}cn{]-

in_ on lhc {}Picntation of the vehiclc and its a]titu{Ic,

lni_}, [)t" of ct}ns{'qLionct, an(] may I't'{]tlJl'O all cx[)cn-

{Jittn'(_ of a significant atnount of control s.ystcln

i1]{)[]]/tntLlt]]. ]n fact, fop some extremely low

allitu{lc satellites, certain prot)osals hay{ l)ccn

ma(lu t{} us{ the aerodynan_i{ torquus through c(

]al'g{' PuddcP or actuating tPailing {Jl'&g dc_icc h}

obtain tnnl('o] toPqucs. 5into somewhat higher

a]lilu{h, satellites arc being {:onsidcPcd hope, the
_cPodynamh: torque will bc tl'cate{I as a disturb

En{:{, {()2"{tL!c with simplific{t tncthods for computing
its (!ff{'{'ls.

t<nowh_(tg(_ o£ ti]o dcnsity of the upl)cr atmosphPrc

is conslantly improving. The At{DC 1,{)59 Atmos-

sphcPc, which is fPcquently use{I, Pcprcs(,nts 1}2{,

avci'ag{> (icnsil 5, when pePige(, is in twilight n{.ar

th{, tim(, {if a sunspot maximum. T}ic (tensity can

_ary (:{insi{Ict'ably from the ARDC 1,{)5[) )nod(q.

"IlypcPthc{'n_al fro(" molecule" fh)w thcoPy is

gcn{q'a]]y us{'(] to obtain the shcarine and n{}rmal

StI'cSS('S On the vai'ious flat sut'f':mcs of :2 ,_i)ace

\,chicle. Although this {hoop 5, has bccn adc(luatcly
dcs('rib{,{t, two important cPitcria associated with

it art, worthy of not{?.

(l) Thc mean frcc [)at}] of the air mo](,cuh s

must he many timcs gPcatcr than the

size of the bod 5, moving through th(' aiP.

In lhu vicinity of th(, t){)(]5, the t'l'('qu{'nu>
of collisi()ns h tw(,cu air ll]{)h'ctlh_s is

n{?Mligibh' Pclati_c 1{} th(' fl'cqtlcl]C} {)i'
collisions b{,twc{,n the moh,cuh,s amt

the body surfa{.{.. Th(, above condilion
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is realizedfor mostspacecraftsince
at analtitudeof 150mi (280kin), the
meanfree pathof freestreammolecules
is approximatelyi000ft (300m)where-
asthelargestbodydimensioni._usually
lessthan15ft. (5m)

(2) Theterm "hyperthermal"impliesa
vehiclespeedmuchgreaterthanthe
mean free stream nloleeu]_ar speed,

The orbital speed of spacecraft at 150
mi (280 km) is roughly an ordeP of mag-

nitude greater than the mean molecuIar

speed, and hence, the hyperthermal con-
dition is deemed acceptable.

The equations wtlich describe the pr_,ssure,

P, and the shearing stress, S, are

P = 2(2 - c;') q sin 2 _ (181)

S = 20 q sin /3 cos 13 (182)

where the pressure, P, acts normal to tile surface

and the shearing stress, S, tangent to the surface

in ttle direction of the normal projection of the

velocity vector on the surface. The angle of at-

tack, /3, may be expressed in terms of the yawing

angle, 0, for the body surface. Hence, /3 = _ and

= 90 ° - _ for surfaces whose normals are along
the y- and x-body-axes, respectively (see sketch
Section D. 1.). It can be shown for the solar array

that sin /3 = sin _ cos Cp. The previous angle

relations are valid only when the velocity vector

lies in the x b, Yb plane. Computation of force on

the body and array surfaces as a function of _ or

,# and _0p is a straightforward process provided

tile surface area is known. Tile question of sur-

face area arises when it is realized that at most

yaw angles the leading paddle partially shades the

body and portions of the body partially shade the

trailing paddle from possible molecular collisions.
As a result, shading factors must be calculated.

Since fop tills type of flow the center of pressure
is essentially at the center of the exposed surfaces,

it is necessary to calculate the latter in conjunc-

tion with the shading factors.

The two quantities, o and o', respectively,
defined as the surface reflection coefficients for"

tangential and normal momentum exchange, have

a significant influence on the magnitude of the

pressure and shearing stress. Tile nature of the
molecular re-emission, and hence the value of u

and c_', are functions of the type of surface mate-

rial, the w_tocity angle of incidence, and the wall

temperature. The value of cr and G' can vary be-

tween 0 and 1. The few measurements made on

typical engineering surfaces indicate values of cr
between 0.8 and 1.0. For low angles of attack it

appears that the characteristic of re-emission

may be altered sufficiently to cause considerable
deviations of o' from these values. Tile quantity,

a', had not yet been measuned expePimentalls,;

however, the values of {7 and 0' should not differ

greatly. The surface interaction experiments
which have been conducted imply that most mole-
cules do not rebound in billiard-ball fashion, i.e.,

with the angles of incidence and reflection equal,

but that they are diffusely scattered due to

(1) physical roughness of the surface, and (2)

temporary trapping on the surface. Tile effect

of changes of these coefficients on the maximum

disturbing moments must also be considered in

the design until better data are available.

For' preliminary design, an approximate

nlaxilllUnl nlonle[]t due to aerod) nit.lnies for a

spacecraft similar Ix) that M_own in the sketch
of Section D. 1. can be computed quickly. Com-

pute the offset of the center of area from the

center (}f nl;tsP; and the expo,_ed aF('_t for the

/_or b's which appear critical. The torque

clu_' 1{) drag is sin;ply

M D - CI) LID Aq (183)

whet'e

C D = the (it'ag coefficient of 2(2 - a')

L D = the- assumed center of area offset
from the center of gravity

A : the total area bombarded by molecules

q _ dynamic pressure at thc;2spacecraft
altilude equal to 1/2 p v .

If aerodynamic torques are a problem, the

length, L D, which is determined by tile center

of area normal lo the airstreanl, must be closely

controlled.

If the yaw angle is such that the spacecraft
does not shade impinging molecules from one

paddle, then no net equivalent lift torque is ex-

perienced. However, there will be a torque if

tile yaw angle is such that one of the paddles is
shaded. The moment which tends to rotate the

body about tile taxis is given approximatels' by

2 2

M L = C L (1 - f) L L A q sin 0 cosP ¢p sin %)

(184)

where

C L = lift coefficient or 2(2 - or' - o)

L L = the distance of center of solar paddle
area fPom center of vehicle mass

f : tile shading factor on one paddle

A = the area of one solar paddle
P

_p = the angle with respect to tht' velocity

vector (yaw angle)

Cp = the solar spray angle.

This expression is not (waluatcd since the

shading factor is also a function of qJ and possibly

0p. The equations presented for these torques

are appI'{}XlUla|e anti al'e presented only' to allow

a rough deteiunination. Different equations, of

course, must be derived for other configurations

and, in any event, a more refined analysis of

these toPques should be performed if a problem

area is suspected.
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c. Use of momentum storage devices

The use of rotating devices to provide momen-
tum storage in a spacecraft has been described

extensively in the literature. Such devices are
generally used to continuously absorb the effect
of disturbance torques, to store momentum due
to orbital rate, and to perform special control

maneuvers. Constant speed rotating inertial
devices may be used to change the gyroscopic
coupling torques about a particular axis or axes.
In designing a system for momentum storage, it
must be remembered that the momentum storage
requirements are determined by inertial torques
as they appear in body axes. A constant external
torque with respect to inertial space will change
the total momentum of the system, and hence the
storage requirements will increase with time.
However, disturbance torques which are fixed in
the body may require momentum storage that is
cyclic in inertial space, dependent on the orienta-
tion of the body axes with respect to inertial space.
Understanding the relationship of the inertial and
body reference frames is a fundamental point in

determining how stored momentum must be han-
dled. For example, assume a spacecraft is to

rotate uniformly in such a way as to point to the
earth as it progresses in orbit; to do so requires
a rotation of 360 ° per orbit. In the absence of
any applied torques, the stored momentum of the

system will remain constant with respect to iner-
tial space. In general, at any point in orbit, the
momentum can be considered to be stored in

three-body-fixed wheels whose axes may not
coincide with the inertial frame. In such an in-

stance the wheels will change speed continuously
in order to transfer momentum from one body axis
to another (although the momenta are fixed in
inertial space) in order that at every instant the
sum of the individual momenta will equal the total
constant momentum.

The effectiveness of reaction wheels is based

on the law that the time rate of change of wheel
momentum is equal to the torque. The attitude
error signal is used with filtering to control the
wheel speed, meaning that for nonzero constant
momentum storage there must be an angular
pointing error. Integral control can be used to
alleviate this problem in the steady state. Since
most momentum storage devices are limited in
their storage capability, momentum storage may

be used in conjunction with momentum expulsion
devices to allow operation beyond the capability
of the storage device for removing the momentum.
Such systems then combine the most useful function
of the momentum storage (to absorb continuously
without extreme energy expenditure the momen-
tum imparted by disturbance torques and orbital
maneuvers) and that of the mass expulsion system
(to remove momentum from the system only when
it saturates the storage device).

The momentum storage system adds complexity
to the system. If the problem of coupling between
axes is significant, careful design will be required.
Methods proposed for obtaining momentum storage
include rotating inertia (a motor-driven inertial
flywheel, gyro stabilizer gimballed gyroscopes)
and the control of the motion of a fluid moving in
an enclosed circuit. In an attempt to reduce the

cross-coupling terms, a free sphere has been

proposed. The present satellite designs _enerally
use the single-axis, motor- driven flywheels.

d. Use of mass expulsion devices

The attitude control of a spacecraft with

initial rates in the presence of an external torque
field can be simply achieved through the use of
a variety of mass expulsion devices. The actua-
tion of such devices will be controlled by the out-
put of a sensor and used to change the angular rate
of the spacecraft to keep it within some attitude
error limit or to preeess the spin axis of a spin

stabilized spacecraft The mass expulsion system
may either produce a torque proportional to the

error signal or produce quantized torque levels
for controlled periods of time to maintain the ve-

hicle angular momentum below some prescribed
limit.

The governing problem in design is the trade-
off between weight and reliability. The simplest

system is the single levelthrust, on-off system
used to maintain the spacecraft attitude error
and error rate within certain limits. The im-

pulse required for such systems is a direct func-
tion of the limit cycle rate, the lowest value of
which is determined by such parameters as rate
gain, position gain, filtering, sensor noise, valve
actuation hysteresis, valve time delay, thrust
build-up and decay characteristics, design thrust
level, etc.

The use of cold gas such as dry nitrogen with
nozzles and regulators designed to produce thrusts
of the order of 0. 1 to 0. 001 lb (.4 to . 004 newtonsl
is acceptable for most present spacecraft weights
and lifetimes. Of course, larger thrusts will be
required to provide control moments for large
satellites or during periods when the booster stage
is attached to the spacecraft or when misalign-
ments of the thrust used for mideourse corrections
require a larger control authority to overcome

overturning moments. Hot gas systems will have
a specific impulse considerably greater than
that of the cold gas; however, problems as-

sociated with multiple starts, obtaining the low-
thrust level, and thrust characteristics may not
make such a system attractive except where
larger thrust levels are required.

The on-off system, when used as the only
means of obtaining control torques, requires a
significant amount of impulse for long-term
operation. If thrust is made proportional to the
attitude error (such as is possible with propor-
tional jets) it will react to disturbance torques
continuously except when operation is within the
low signal nonlinearities of the valve. The con-
tinuous operation in response to cyclic disturb-
ance torques will also require a large expenditure
of impulse over a significant lifetime, A more
suitable design for long lifetime missions will
be to expend electrical power (which can be re-
plenished easily using solar cells) to control
body-fixed reaction wheels in response to the
angular momentum changes. The mass expul-

sion system would only be used to remove the
effects of secular torques.

The development of more efficient, higher
impulse systems such as plasma, ion and vapor
propulsion is necessary for propulsive systems
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in satellites which must achieve the longer life-

times of several years--probably a requirement

of the near future. With these systems, a signifi-

cant weight advantage will be obtained if their

reliability is acceptable.

Proportional and simple on-off controls have

been mentioned as possible means of obtaining

control torques without any additional torque-

producing requirements. Other schemes have

been proposed. One reduces the gas required by

a simple on-off single level thruster by using the

flexibility of a two-level thrusting system. Such

a system, if properly designed, does not require

rate information for stable operation. Another

method with some advantages is modulation oI

the pulse duration applied by a single level jet as

a function of the error signal. This system is
also stable without rate information.

e. Combination systems

Momentum expulsion and momentum storage

devices can be designed to complement one an-

other. The storage device will control or store

momentum due to cyclical torques on the space-

craft without gas expulsion and the jets will over-

come long-term constant disturbance torques by

periodically desaturating the storage device by

expelling mass from the spacecraft. The jets

will be needed also to counter initial body attitude

rates, when the vehicle is separated from its

booster, and perhaps torques produced by rocket

thrust misalignment during guidance maneuvers.

The desirability of such combined systems will

be determined on the basis of the factors of weight

(including power consumption) and reliability for

a given lifetime.

3. Methods of Attitude Sensin G

The purpose of this section is to examine im-

portant methods which could be used for sensing

the attitude of spacecraft from which attitude error

signals can be generated. Basically, the methods

will include earth, sun and stellar sighting, the

use of inertial instruments, and the use of ambient

fields.

a. Earth horizon sensors

The achievement of many earth orbiting mis-

sions will require the spacecraft to point one axis

along or at some preset fixed angle with respect
to the earth's instantaneous local vertical. There

are a number of earth sensing devices, generally

referred to as horizon scanners, which may be

employed for this purpose. Horizon scanner

operation depends on the detection of the difference

in radiation emitted or reflected by the earth and

the earth's atmosphere, and the radiation emitted

by free space. The radiation emitted by the earth

and the earth's atmosphere approximates black

body radiation at a temperature which varies from
220 ° K to 280 ° K. In addition to the emitted radia-

tion, the earth reflects solar radiation dependent

on the relative earth and sun positions. This dis-
cussion will be confined to devices which utilize

only earth and earth's atmosphere emit[ed radia-

tion and thus capable of both night and day operation.

operation.

A horizon scanner consists of four basic parts:

an optical system; a scanning system; a radiation

detector; and an information processing system.
The optical system's principal function is to con-

centrate the energy in the optical field of view

onto a suitable detector system. The scanning
system moves the optical field of view in some

precise manner relative to the spacecraft. The
radiation detector may be a single element or

system of elements which are sensitive to the
radiation to be measured. The information

processing system contains the logic circuitry

necessary to provide proper error signals to

the control system.

There are basic limitations to the accuracy

of horizon scanners which are dependent on the

altitude of the spacecraft relative to the earth.

The limitations involve the shape of the earth,

and the variations in the earth-space radiation

difference. By proper selection of the radiation

spectra used by the detector and canning
mechanism used to locate the earth, these in-

accuracies may be minimized.

The most widely accepted detector for applica-
tion in horizon scanners is the thermistor balom-

eter. This device has substantially a flat spectral

response from ultraviolet to the far infrared and,
for uncooled detectors, exhibits the best detection

in the infrared spectral range. The precise spec-

tral range for detector operation is determined by

the selection of elements in the optical system.

The method used for scanning depends upon

the orbital parameters of the spacecraft mission,
overall system accuracy, and the requirements

for earth acquisition.

There are three principal types of scanning

techniques: a fixed field of view continuously

scanning in a cone; an edge tracker system which

locates and tracks the horizon in a fixed plane;

and a passive scanner which utilizes a wide field

of view imaged on a detector array. There are

other scanning systems which will not be discussed,

such as a rosette scan pattern or the possible use

of image tube techniques for electronic image

plane scanning.

(i) Conical scannin G. Figure 32 depicts a
typical conical scanner system (two scanners) in

normal operation. The optics for each scanner

consists of a prism and lens system which causes
the field of view, focused on the detector, to scan

in a circle in some fixed half-angle cone by con-

tinuous rotation of the prism.

A schematic of the scanner optics is shown in

Fig. 32b. The detector output signal for each

revolution of the prism is shown in Fig. 32c.
Each scanner controls one of the vehicle axes.

The control signal is generated by sensing the

width of the balometer output pulse on either side

of a reference signal, which is aligned with the

vehicle control axis. Referring to Fig. 32d, the

vehicle is aligned in roll when A-C is equal to C-B.

Control relative to two axes may also be obtained

with the same type of scanners in alternate scan

orientation. Referring to Fig. 32e, the vehicle is

aligned in roll when A-C is equal to C-B, and

aligned in pitch when A-B is equal to A'-B'. This
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typeof scantechniqueis bestappliedto space-
craft missions which have nearly circular orbits.

Since the scanner is generally best designed for

operation oven a limited range of altitudes, the

large variation ill the ratio of earth-to-space re-

turn signals obtained in highly eccentric orbits

will create a special design problem if accuracy

is required.

The conical scanner can be designed also to

operate with a half-angle cone equal to 90 ° . Two

such scanners would control a spacecraft in two
axes ill the san]e nlanner as the scanner described

above, where the axes of rotation of the prisms

are normal to each other. The scan pattern would

appear similar to Fig. 33 except the scans would

intersect along the vehicle yaw axis, coincident

with the local vertical when no spacecraft pitch

or roll attitude error exists.

(2) Edge Tracking. The sketch shows a
schematic of a single edge tracking horizon scan-

ner. This scanner uses the detector output to
drive a mirror. The field of view of the mirror

is continuously oscillated through some small angle

in a plane independent of the mirror drive. The

mirror drive is nulled when the detector output is

a square wave, whict_ indicates that the mean posi-
tion of the small oscillation of the fiehl of view,

and hence the mirror, coincides with the earth

horizon.

/,_,,_/- D ET ECTOR

I

-,,,,} [_
I MIRROR

/ I _ ANGULAR OUTPUT

The field of view of the mirror may be oscil-

lated by many techniques--for" example, by oscil-

lating the mirror as shown in the figure, or by

interrupting the incoming radiation with a shaped

reticle. Figure 33 indicates bow three-edge track-

ing scanners may be used to generate spacecraft

pitch and roll control signals. The angle of each
mirror is measured relative to a vehicle reference

axis. The field of view of each scanner searches

in a fixed plane relative to the spacecraft. The

pitch and roll attitude error signal may be gener-

ated by processing the difference in the angles

measured by trackers A and D, and the angles

measured by trackers A and B. A fourttt tracker,

C, may be used to provide the redundant error

signals.

(3) Passive scanner. A simple example of a

passive scanner is shown in Fig. 34. A wide-

angle lens system images the earth's radiation on

a detector array. The control error signals are

obtained by differencing the detector outputs. This

system is only workahlc for spacecraft missions

with near circular orbits, since tile detector array,
l_lust be sized for' a near" constant size earth imatle.

Other passive scanners might include electronic
imaging tubes and simple shadow bar techniques

for operation at extreme disturbances.

The scanners also suffer from _he l)roblem of

sun interference. The presence of l}_e sun with

its high energy in the balometer field of view for

extended periods will cause erroneous sig'nals to

be generated and lnay possibly damage the detector.

Means of determining 1he sun's presence and elim-

inating its effect on tire control signal must be pro-

vlcied. The passive scanner with its large field of

view will contain the sun more during orbital life

than the other scanners. During this _ime the scan-

net' must not only be made inoperatiw' but, in order

to protect tile detector system from damage due to

solar radiation, some positive filterin_ of lhe sun's

energy must be accomplished.

b. V/It technique

The V/H technique, as applied to attitude con-

trol, is described in Hcf. (8). Tlne V/H technique

is also a potentially accurate navigation systonl for

close orbits of a planet. From correlation of stored

strip pictures of the expected track of the vehicle

and real-time pictures taken from the satellite, de-

viations from the desired orbital position eouhl be

determined. Velocity information couht be obtained

by correlating two successive pictures taken with
a fixed time delay.

Basically, the method consists of measurin_ the

ratio of satellite velocity (V) to altitude (It) by the

use of the following equation:

v _ fl
= 2--- Ntan c_

COS O_

where c_ is the angle between some object on the

ground and the vertical. This is mechanized by

correlation of video signals from successive frames

of a vidicon. Image velocity V t is directly pro-

portional to V/H.

V

V' = H' " l:i

where H' is the focal length of the instrument.

A mechanization diagram of the optical corre-
later for the V/H orbital guidance system is shown

in the following sketch.

The reference map is formed electronically by

exciting an optically thin CdS (cadmium sulfide)

film by a long persistence blue phosphor light,
thus creating a pattern of absorption. The blue

phosphor light renders transparent object areas

upon illumination. The CdS film must be of suf-
ficient thickness to provide a volume absorption

which would prevent obtaining false results. False
results would be obtained if the film were not

thick enough, and some unmatched part of the

scene wouhi have greater transmitted brightness
titan the correlation peak. The optimum film

thickness should be obtained by experimentation.

The green emission is eliminated by the green

filter, and the transmitted light will haw_ the

characteristic of two patterns multiplied together.

When this distribution is integrated, the correla-

tion function is formed except that some back

ground level will be transmitted. However, the

peak will exist and can be detected.
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c. Sun sensors

The sun is an excellent reference for many

satellites in that fairly simple sensors can be

used to attain both a measure of yaw orientation

and, if a rotatable solar' array is used, solar ar-

ray orientation. Spacecraft for solar experiments
will use such devices for orienting along the sun-

line. The principal problem with sun sensors
occurs when the vehicle is in eclipse and such

sensors can no longer be used. As will be incti-
cated later in the discussion of modes of attitude

control, several steps may be taken to minimize

effects of such a problem.

The simplest form of sun sensor' employs

photovoltaic solar cells. These cells can be

used in a variety of ways to provide angular er-
ror information. For most application s the line-

ar range ix limited to +20 to 40 ° with a sat-

urated output over' the rest of the 360% The

following sketch illustrates such a characteristic.

_p_O
I

-30° i

o
I

la0 e

If relatively high accuracy is required, a de-
vice similar to that indicated as yaw scanner in

Fig. 35 will, by measuring dwell amplitude on

the scanning mirror, give about 0.05 ° for linear

ranges up to 10 °. (A reduction in accuracy will
be imposed if greater linear ranges are required.)
]f accuracies no better than about 0.5 ° to 1 ° are of

interest, then the extremely simple shadowing

array such as the array orientation sensor, one-

half of which is shown in Fig. 35, or the T-bar

arrangement shown in Fig. 36 may be employed.
It should be noted that such devices arc subject

to null shifts and gain variation, due to the dif-

ference in thermal properties of the cells.

A relatively new method of sun sensing is the

use of a spot position transducer. This device is

a solid-state transducer whose output is sensitive

to the position of a light spot on its surface. This

transducer converts the light-spot x and y dis-

placement into a pair of voltages V x and Vy pro-

portional to the displacement. The displacements

are referred to the cell center where x, y, V
x

and V are all zero. By using a simple lens, the
Y

sun may be imaged on the transducer. A function

of the angular position of the sun is then obtained
in the two axes normal to the position of optical

axis of the system. The linearity and accuracy

which may be obtained with this device are deter-

mined by the sophistication employed in the op-
tics and the desired field of view.

Many systems are available for measuring
deviations from the sun. The three presented

here represent only a very small sample.

d. Gyro mechanisms

Error signals for control to an inertial refer-
ence can be provided by gyro mechanisms. Both

single-degree-of-freedom and two-degree-of-
freedom gyros could be used for this application.

For long term operation, gyro drift will cause

major attitude reference errors unless means fox"

resetting the gyro and/or in-flight calibration to

eliminate drift are incorporated. This might be
dotle with information derived in the vehicle with

relationship to stars, sun, etc., or on ground-

command based on ephemeris or telemetry data.

One means of determining spacecraft error

fl-om the orbit plane is to operate a gyro whose

input axis is to be aligned in the orbit plane in a

rate mode. Such a gyro, if not oriented in the

orbit plane, will sense some fraction of the or-
bital rate of the earth-oriented vehicle as it pro-

ceeds in its orbit around the earth. The use of

this rate essentially provides a gyrocompass
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scheme for determining orbit plane reference

above very low altitude orbits where the orbital

rate is high. Such a system has practical diffi-

culties. Compensation will be required for tile

spacecraft rates in roll (or pitch) which will also

appear in the output of the gyro. The drift char-

acteristics and basic accuracy of the gyro limit

the ultimate accuracy of the system. For a small

input axis alignment error, e z, the gyro output,

, will be the component of pitch and roll rate,
.g

eh, along the axis plus the component of orbital

rate, ¢_oez .

eg : eh + _0ez (185)

By properly introducing the component of error

due to input other than orbital rate, ell, (see

sketch) the output of a rate integrating gyro in a

rate mode can be approximately that of the com-

ponent of orbital rate. For convenience, the roll

axis is to be aligned in the orbit plane. Thus e h

becomes e x. Note that the noise introduced from

the sensed motions about the roll axis may be sig-
nificant, and if the orbital rate is too low (reduced

as a function of altitude) the system is impractical.

+ e Z _0
r RATE

INTEGRATING

GYRO

(ROLL)

GYRO

TORQUER

HORIZON SCANNER

ROLL ERROR

e x

to o e z

The use of the gyrocompass technique as

standard practice requires additional power for

temperature control, and is subject to the long

term reliability problems generally associated

with most gyros.

Other schemes for orienting the hody with re-

spect to the orbit plane should be studied. It is

possible to use ephemeris data, from which sun/

orbit plane orientation with respect to one another

can be predicted. This, combined with the con-

trol laws, will provide knowledge of the satellite

yaw attitude with respect to the orbit plane. Sun

sensors can be used to determine when the space-

craft is in the noon, or near-noon, condition (that

is, when the solar array goes through 0°). At

this time the vehicle yaw angle is known and can

be used. A gyro will maintain inertial orientation

about the yaw axis and additional commands are

necessary only to remove the errors due to gyro

drift and to the regression of nodes.

e. Celestia] observations

The star field may be used in two ways for the

orientation of the satellite. First, a particular

star might be used as the sun or the earth are

used to maintain a fixed orientation with respect

to that star. (In the case of complete star ori-

entation perhaps two or more stars may be chosen

for such an orientation.) Secondly, the star field
of motion as observed in tile vehicle can bc used

to measure the rate of change of the vehicle.

(1) Attitude. Sighting on distant stars may be

used with an inertially established frame of refer-

ence to achieve initial alignment of the references

or to prevent long term drift, if necessary. It is

possible to use optical sightings, such as a tele-

scope, or even tile radio frequency noise sensed

by a radio-telescope. The two severe problems

encountered in the use of celestial sensing are the

acquisition of the star, and the amount of compu-

tation required to transform the star reference

set of axes into the appropriate vehicle control

error signals. One excellent way in which a star

may be used to obtain continuous or intermittent

information without complicated computation is in

orbits where a pole star is available. A very

good application of this mettled is in an earth equa-

torial orbit. Actually, any inclined orbit about a

spherical body with a pole star wouhl bc accept-
able, but, because of the regression of the line

of nodes due to the earth's oblatenesS, computa-

tion is required for most earth-orbiting vehicles.

The tracking of stars with high precision tele-

scopes and very accurate telescopic drives is

necessary to obtain exceptional accuracy. Of

particular interest is the Orbiting Astronomical

Observatory which is under development by NASA,
in which absolute sensor accuracies on the order

of seconds of are are required.

(2) Attitude rate. Considerable interest has

been expressed in what are often called "celestial

driftometers." A telescope or some other optical

means is fixed relative to the axes of the satellite

and drift velocities of the stars across the field

are measured. From this, one can obtain a com-

ponent of the angular velocity of the star field

relative to the vehicle which is then a component

of the angular velocity in inertial space. The

main purpose for this device is to provide rate

measurements for precise control with respect

to the orbital rate vector.

f. Other ambient field sensors

It is possible to obtain certain information

about the vehicle's orientation in space through

tile use of ambient fields other than those previ-

ously discussed. Fields which can be used ap-

pear to be the gravity field, the magnetic field,

and, for extremely low altitude orbits, the at-

mosphere. It has been suggested that if cosmic

rays are directional in space, the gradient in its

intensity may be used as a sensor.

(i) Gravity gradient. A vehicle will tend to

align its axis of minimum inertia along the local

vertical to the earth, and its axis of maximum

inertia normal to the orbit plane, due to the effect

of the gravitational field. This effect acts as a

torque which provides control, and also as a sen-

sor of direction of the gravitational potential. In

other words, the restoring torque appears in tile

equations of motion as if it hacl been introduced

1)5' an independent control system operating on
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externalinformation.It is alsoimpossibleto
imagineinstrumentsconstructedsuchthatthey
wouldoperateindcpendentlyonthegravityfield
to determinethedirectionof thelocalvertical.
Suchinstrumentshavebeenmentionedaspossi-
bilities, butnonehavebeengivenseriouscon-
sideration.Thetwopossibletypesare thependu-
lumtype, utilizingtwopendulumsforminga dumb-
bell freeto turnaboutoneaxis, andtheotherin-
volvingtheuseof aecelerometersoperatingdif-
ferentlyto providea directmeasureof thegravity
gradient.

(2) M____netic fields. The earth's magnetic

field could conveniently be used as an orientation

reference for satellites in near-earth orbits. This

is reported to i:ave been done in Sputnik Ill. More-

over, it seems that the magnetometers could be

put to good advantage measuring the magnitude of

the earth's magnetic field. The primary difficulty

is not so much one of the inherent measuring ca-

pability of the instrument itself, but of measuring

the precise direction of the magnetic field with

respect to the vehicle in its orbit because of he-

terogeneities in the earth's field, ionospheric

currents, geomagnetic storms, and fields pres-

ent in the spacecraft itself. However, if magne-

tiee torques are to be used to advantage, some

measure of at least the direction of the magne-

tic field must be obtained.

(3) Atmospi:ere. In any low altitude orbit it

may be pc_to use such devices as are em-

ployed in airplanes, missiles, etc., wilici: are

most sensitive to the very nearly negligible at-

mosphere. For examph', a weather vane might

provide informatiotl about the relative winds for

one set of axes. Using an extremely sensitive

pressure device would allow the hulling of such

pressures to achieve appropriate orientation.

However, the pressure at the altitudes above

i00 mi suggests that, at present, this is an im-

practical approach.

(4) Other ambient fields. Natural radiation

such as cosmic rays, micrometeoroids and ion

streams could be exploited for the use of attitude

control system sensor's. Most o[ these de'vices,

however, appear to present no advantage over

those being used and are not receiving a great

deal of consideration. For example, the direc-

tion of the spacecraft velocity can be determined

by the relative bombardment of charged particles
with respect to the body axis. fen "traps" flown

on Explorer VIII have indicated that sufficient
current can be obtained to orient the vehicle rela-

tive to the velocity vector. The accuracy of a

system using ion traps will probably be below

that of optical systems, but it may find applica-

tion when other sensors arc inoperative due to

occulting of the senscd body.

Anolher potential method would include the

use of radio Iechniqucs wlwrein the difference

between the received signals of two untemlas
would be a measure of the attitude error in a

plane containing the two antennas. This differ-

cnein_ couht be obtained eleetricall> in the space-

eraft or through the use of inter fie'once techniques.

An additional method might b(- the use of return

signals from u body which is receivin_ the output
of u satellite-contained radar° _uch schelm)s

have been proposed for the landing of spacecraft

on distant planets, as well as for achieving some
measure of stabilization information at low alti-

tudes.

4. Modes of Attitude Control

This section will discuss some primary modes

of operation that are generally necessary in order

that the spacecraft mission can be performed.

In general, the spacecraft will be separated

from its booster with potentially sizable error's

with respect to the final orientation requirements
in both attitude and attitude rate. An initial mode

of operation will be to control the initial rates and

provide the proper' attitude orientation. The proc-

ess which describes tbc acquisition from separa-
tion to the final orientation is often called "acquisi-

tion" and generally consists of at least three sep-
arate modes--initial rate adjustment, search, and

final acquisition. The ac'tual switching and se-

quencing for achieving acquisition will vary be-

tween spacecraft systems, depending on the ori-

entation requirements, sensor" limitations, meth-

ods of obtaining control orientation, etc.

The second major control mode will be the

mode of operation required to maintain the proper
attitude orientation and stabilization. This mode

is often referred to as the "normal" operating

mode. Special operating provisions may be re-

quired when the normal control system operation

is not possible; this occurs, for example, when

the sun or' star sensors are occulted by the earth,

or when tire spacecraft axis about which sun sen-

sor information is used lies along the sun lines.

Each orientation requirement defines a set of op-

erating requirements, for example, control laws

associated with solar' array orientation, orbit

plane orientation, and the like must be imple-

mented. Other modes of control might include

providing proper orientation of the spacecraft

during velocity eorr'ections required for orbit
control, terminal mamuvering for docking, and

deboost preparatory to re-entry.

a. Acquisition

During the separation of the spacecraft from
its booster, angular impulses will be imparted

to the spacecraft,resulting in initial rates which
cannot be ignored. The first step after the con-

trol system has been electrically activated will be
to control or null these rates with respect to some

reference axes. For a spacecraft which uses a

solar array, it is often desirable to null the rates

in two axes about the earth-sun line by immedi-

ately orienting the solar array (held fixed with
respect to the spacecraft during acquisition) to

the sun. In the case of systems using the manipu-

lation of the forces of space such as gravity gradi-

ent, earth's magnetic field, etc., momentum

storage and/or mass expulsion devices are gener-

ally needed to reduce initial body rates to an ac-

ceptable level. Body-fixed rate measuring instr'u-

ments providing attitude rate signals to momentum
transfer devices can be used to reduce these rates

before orientation of the body axes is achieved.

()nee the body rates are reduced to small mag-

nitudes, u search mode of operation wilt generally
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be i'[_quiF(,d. Dui'i_i_ t}tis lit<taleth( sensoi's ai'e

eaus(_(t to p(,rfoFm _l s_'itr(:h fez" 1:hose objects
_hieh th(',y will s{,nse to provi(le attitude error

situ_als. There are man3 alternative approachc_s

10 the searc]l l]lo([(,, rF}](' selection of tit() approach

is (tl'ton dt_pel_lent on a trtidooff l)etween the d.y-

na_]]i(' Fa_lge ()f the sellsol', orbit c{)nditions for

acquisition, operational launch time r(:quirements,
etc. I)(_pending on tbv sensor and the control sys-

tem, cith(,i" the entire spacecraft is rotated or' it

may b(_ desi_'abl(_ to perform tile search by articu-

lating th(_ st!riser (like a l':_(]aY dish, star trael<eY,

etc.) with respect to thv body.

At:quisition of pi-opel' oFientation wh{,n the con-

trol torques are _(uleFat(_(] by essentially passive

means is g('nerall,y simplei" than acquisition with

activ(_ control s)'stems, in the cltse of spinning
satellites, lateral impulses at sel/aration of satel-

lite and booster wi]l produce a fl'ee precession or

nutation of the v_hiclc. An ineFtiall), fixed ori-

entation is established by this satellite as soon as
the nutation of the vehi(:]e about its momentum

vectoF has been daml)(_d. Such (lamt)in_, as indi-

cated pre_iOtlSly, may be pt'ovi(t(_d by a simple

dl'vic( like an annular t'ing of mei'ctlr), located
about the spin axis. A new inertial orientation

of the spinning body is aehicve(i by a controlled

pre(ession of the spin axis in a plane containitlg
the initial momentum _evtl)r and th( filial desired

orientation of the spin axis.

With the use of gravity gradient, ()nee the ini-

tial rates have been stopped and suffiei(mt damping

has been added, tht, s,ystcm will automatically ac-

quire the earth's local vertical with tht_ pt'ineipal
axis of minimum inertia and }lave the prin('ipal

axis of maximum inertia normal to orbit plane.

The angular ciTer associat(_d with tb(? acquisition

will depend on the relutiv( magnitude of the dis-

turbanee and control torques and th{_ misatignment
of the eontt'ol axis with tit{" local vertical. Tht,

time requJr{_(t for acquisition d{!pcnds on the (:_p_i-

bility of the damping devices and th(, initial con(ii-
tions.

In the desig_n of the acquisition mode, any i'c-

quirements which sevez'ely limit the time to "at-
quire" must be carefully reviewed. Such limita-

tions are significant in the d(_termination of the

am_,urlt o[' ga:_ LJse I, size of tile pneumatic jets,

torque require'merits of the reaction wheel, etc.

b'or example, the gas let control moment may

have been detcFmint,d to pL'ovide a (:ez'tain factor

of (lesaturation to a set of rcae, tion wheels oper-

ating in dual mode operation, tIowevcr, the jet
control moment that is detel'min{_d for d(,s_tura-

tion is usually nol the best size to meet lhe l'at/,

nullin_ r('quii'eln<,nts. If this is tI'ue, a com-

})I'omist_ s()lutioll will be ii(!cessar5% The set_-

SOI'S use(I ['OF acquisition may significantly affe(t
th(, _as (,onsumplion. It illa¥ be d(,sirabI(,, fol'

_.xamp[{,, i{) ttd(] _/l_ attxiHat',y i'Llt('g>,ro a_ld/nr

[)l'()%i{lt' a St,llSi)l' with a wit]el' d.ynamic: Fang(_.

Ncithcl, of lht,s(, I'('qtlJl'etll('lltS is []t'('t,sHai',y _'o1"

nt)YHl:[i <}pt'F_tiio_l .... \d{iitinna] {,l(:('ir()l/i(:s LLi'{!

F('(IHiF¢'(I l{) I)_'FI()F_n i:h(' s\_,it('hill_ tttl(l ]oL(](: I'Llll('-

ti()tlS l'e({[_il'('_t ill 1]liS [IItH_t'.

l_'illt/] t>[)_'l'alJ¢ln_ti stl,ps of uvquisiii(tn, con

sis/ilI,E_ tH' s<,[Xil'_tl<, _i sttce(,ssJ\_,l._ _()i'_ _ _t'uu-

Fal(, m()<h,s ()f v()ntrol, ('_vh ()l)tuuHiHa o\vr the

dynamic r:in_4(,consistet/t with ti_t, de\ice_ _xhivh

at'(' tls<'(t for' ('otlLF(II S('t]si_l_ arid ol'J{'tltaltioll _ll_l>'

b(_' tlt_((?ssal'y. To ill)tail/ t'Xll't'lll{']), _)l't'uise _t('-

curacies, s_,v¢,/.tdttf lht,s(, mo(It,s of ol)('r_ttion,

each succl'ssiv_']< t_l(_t'_ clt'(:ui'at('l{ILltt tilt'I)L'('vJ-

Of.IS 011(', {'t)tti(l [)(' LISt!(].

b. NOrlllti [ COl/lFo]

Tht_ orJ{_nlatioll l'('(lu[r(_lllk, tlts t)f tilt. slla('t,(Ta/'t

at'e mission-ch,l)et?denI. Thos¢! ,s_llt'liii('sol']('lll<'<]

with a l)al'tictllax' axis to bt' ali an<'{t aloltg lh_'

<'al'thIs h)cttl v('i'tical will haw simlAt' ¢'{Hlti'(tl in

pit(h and _'_/]l, _cm,rall} mlllittg the' ()uiputs ()t'
eal'th hot'izoll S('/ttlllt'l'S. _]'h(' ('Oll[l't)] trill)Ill Iht'

axis aligm,d ah)ng the loc:_l v_'rtival (3aw atxis)

t/]a.y (Jel)etld (illthe ori('llttH:JtHl l't'(tt]irt'mt'llis wilh

l'eS_)e(:t to tilt' Still ()1' oth{,r bodivs. ']'h_' NLI\V ('()ll-

trol may involve: oFicntatiun of the' _'(_11 {txis in

the orbit plane; orientation of lh_ _ s_t]_' :_riu O'

about the foil axis whell lh(' ,),a_¢ tixis poitlts fit)

the eaYth; special star </rienlation; el' 1)<' siml)l,y
unspe(:ifi<,d.

Tile ess(_tllia] mod('s of ('_)tl|_'ol within |h_' _lor-

nlal cont_'ol for a ll()llsl)Jtl _,al't[1-()l'i(,ii|(,{i sal('llite
follow.

(it l_itch/roll eontrol, l,'or purp_)s_'s of dis-

vussion, the ya,.', axis Js [o be. pointc'(i a_long tilt'
(?al'th_s tot:at v{'rtical. All_Ulal' (h,_iatio[ls fl'()ll]

the local v(!Fti¢:al CLI.tl be detel'n]il_(,d b) horizon

S(:atlil(!l'S, })l'()(:eSSe{] a[]d LlSe(J direelly h)i' Li|iiltl(i()

eontFol eri'of signals.

(2) Yaw control. The yaw contl'ol l)rob]em is

significant and depends on th_ sptice_:raft control

r(,(tuirelllt_tlts. Tile thre/, t]_ost interesting t:LlSt'S

are yaw orientation with respect to the orbit plane,

yaw orientation to provid() l]'taXJt]]Lll// s()lal' el]er_j

on rotatable or nonrotatable solar eclls, and no

yaw requirements.

(at Oibit plane orientation. Orientation with

resl)e(t to the orbit plane is often a dii'ficult con-

trol problem. The difficulty is primarily one of

sensing rather than the need for any unique con-

trol laws. G),roeompassitig provided by the orbit

rate coupling either through the use of _ravity

gradient or by mulling to the output <if _m orbital
r'_te sensor are excellent schemes it theft, is suf-

ficient ol'bital rate.

(b) Solar array/yaw orientation. 5inve the

ol'bJt t)t_tne can have any inclination with l'es[)(,ct

to the earth-sun line, it is neeessal'>_ to I/l'OV]<iC
two degrees of freedom to maintain _ flirt ph_te

oriented noH_al to the sun line. In _lddition to

solar array i'otation, yaw orientation nlust be

performed for nlaxJlnum effi('ien_:y, it lh{' sol_li"

array is not oriented, th<'n yaw (,orS:tel wil}l r{.-

spo(:t to the sun will in genera] impt'_t\,<' <'fficicncy

over control with rest)eet to the orbit [)h_m, or' no
<'otltr<)l.

If lhw ct)ol'_litlate s),stetl/ shown iH I,'i_. S7 in

t*st'_i, |}It' l'()llowin_ control laws i_Hlivctl{' lb(' 3_w

Illt)lit)ll ()1' _ht' s})Lt(tt'(:I'[{['{ (zer() "_'LIV_: _111£[{' _)U('/ll'S

wh('ll th(' I'[_][ ttxis in ill th(, ,H'hi| i_la_H_ ,, :_t_d zwro

LIt'I'LL,%/ at]g](' 'l%h('ll iht, S/H1 in [)('l'f)('ll(]J('ll]tti" [() |tit'

(,ai'th sat_'[]Jtt' ]iItt'). l,'roln tht' l'i£ul'l' il t'_[l{)_s
th:_t
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u = ]'(sin cd + ]'(cos _) (186)
r

u- : ]'tees_)+ f(sin_) (187)

.... (_ Oplx u : u sin - (188}
u r s p

sin $ ::: u • k" (180)
P

: • u (1._m)
sin Op Ur S

combining Eqs (186), (187) and (190), the ideal

array angle is given by

sin tp : cos a • cos [ (19t)

combining Eqs (186), (187), (188) and (189)

and

sin ,_ = sin a, cos [ (1U2)

cos Op

sill _ (193)

cos q, : cos e#p

combining Eqs (192) and (193), tile ideal yaw angle

is Riven by

sin a (194)
tun _ :

In order to eliminate the need for slip rings,

tilt. array angle and hen(e the yaw angle [nay be
restricted to t90% F'igur{' 38 shows variation of

array antic and ,ya_ angle, ccsl)ectivel.v, with
satellite location in orbit.

(e) [Jnspccified yaw orientation. For some

missions there n]uy bc no specific requirements

for orientation about the yaw axis. ltowever, a

requircm_mt Io maintain h_w yaw rates may exist
due to t*cquirements of on-board equipment or

experiments. E}cn _vheIl such is I1Ol tilt:<use, it

will Rcncrall_ bc lle('essal'_' to l'_,(i_lt'(' yqt_v l'ates
to within limits tolerable to tilt' other axes con-

lrols be|{>i'_' acquisition is c{m]plclc.

(3) It(flips % ()n s ystclns where tin' sun in
fol'n]tttion is Hsed to {h't{'rl//in_' y[l\'_attitud(' el'For,

tilt' mode of operation (ltll'in_ c_ lips( of the sun

must bc var('full>' m.<icx_cd. ()l't('n, .law tontFo]

is not l'UqLlh'c{l (]Llring t't:li[),H{'. In such instances

t'eacquisitSon of the SUll WhQn [hc s[)a/'cCUtt['t

emerges froHl eclipse is wccssary. If 3aw con-

trol is required during (_cculting, then a slleeial
SCllSOr or se[1sOl'S inust be lyre\ ided ill ortlev t{)

obtain appl't)l)l'iate atlilu(h' eFt'or signals. YtI\%

orientalion lnlght be maintu_ne(I inertiully with

u prograntnled _lngle with l'l<_[)cct t{) tilt! orbit

plane ill order to ha_.c pro[)er ()Fienltltion ctt the

time of enlt:r_it]g. A S[lllpl_'l' Sc}l('lnt' _otll(] I)('

t{)maintain the spaceCl'al'l l'[tt(' ;ibotlt tilt' >a\%

tixis [}el{)_% a tqnt)_Vl] lt)%_ \[tlkl{'. In this (as{', v¢,

avquisilion of the sun is still l'e(luJl'c{t ttl)_)n

clnel.Zt,l]ee fl'otli eclipse, [)kit lllt[._' Ilt)l I't'(ltlJl'('

ex[)t.lH][tHl'e of klS Inut'h ilnf)tl[Sl' LLH [Ill" LIIIt't)II-
I_'oi]e{t n/_'thod.

It is interestinz to nob' that, uHlcss _p_'cttd

provisions ar_' i[l('ol'pornteci, \%}n'n lh{ c(]il)s_'

region is entered, the momentum stored in the

yaw inertia \;hecl will b(. dumped into the vehicle,

creating an LtllcOntl'()l}('¢] FHtation. This occurs
bee;J.Ltse the yaw loop is essentially opencd, result-

iH_ ill a zero whcc] speed (,on]nland. It may bc
desirabh' in soln_ systcms to damp the initial

yaw wheel speed {luring cclil)se to avoid the mo-
nlentuli1 transfer. For a sun-oriented, spin-

stabilized spacccral't the problem of eclipse is
not serious since lhc sun is essential]y fixed in

inertia] space (lurinI4 tilt'time of eclipse.

(4) Noon control. An additional control prob-
lem aris-Ss-{v}](:n thU-axis for which vontrol infor-

mation is being obtained is aligned along the line

of sight of tile sensed object providing that infer-

[nation. A sun-oriented spaeecraft requires

speeial control syste.m operating provisions to

maintain proper attitude orientation during pert-
ly(Is in some orbits where the angle of the control

axis with respect to tilt, line of sight is not suffi-

eient to obtain useful attitude angle information.

For an curth-ociented satellite with a solar array,

this condition occurs when the sun is in the orbit

plane (_,': 0) and the satellite yaw axis lies along
the earth-sun lira,. This situation is often re-

fcrr(d to as "hi£h nuon." If a sun sensor is used,

the gain in the yaw axis will go to zero at this

point uguin causing tilt: nlomcntum in the yaw wheel
to be dunlped into the' body. For tile control laws

shown in Fig. 38, a 180 ° yaw rotation of the space-

craft is required at lhis time (c_ - 0). This is

often rcfelTed to as the "yaw-turn" and can be

l)erfor'med In & \.ariety of ways. If there is a gyro

present in the ya_ axis, it (:an be used to provide
stabilization during the nlaneuver. In many eases,

the turn can be adequately performed by, program-

H_ing ycl\% l'eaetion wheel speed in a manner which
will onus(, lhc \chicle to rotate. In any ease, pre-
(:auliotls must b(' taken to minimize expenditure

of ilnptllse for eclipse and noun control.

c. Orbit vontvol

tCveqm:ntly \clocity changes are required for
()FI)Jt {'untl'o] or mideourse correction. The eon-

t_'_] system must have sufficient control authority,

to offset the' (listurbing torques caused by thrust

lnisalignn_,nts from the propulsive devices used

to correct the velocity. For system design sim-

plicity it is usually desirable to have only one
thrust nozzh' on the vehicle. The control sys-

tem is then rc(tuired to orient the vehicte to at-

h)w the nozzle thrust to be al)piied in the corr(,ct

direction. This \%tl require a special orientation

mode and I)crhaps a special sensor, (iepen(ling on

the orientation aceuraey required. Large propul-
si\e (tcviees \\'ill bc used for coarse orbit correc-

tions. If precis(, corr(,ctJons are required, it is

likely that io\_ thrust (1)ro})ably cohl ttas) devices

will lye used t(, p_,rform v(,rnier indexing and long

term slation keeping. The required design of the

Vct'I/i_'l' s,\'st{'ln i_l l,'t'I]ls ()t.' tit(' nozzles, gas Stl[)-

pl.v, el{'., sh{_u](i bc inl_.gFut_'d \_ilh the pn_.umctliv

s>sIl'tn tts_'(] I'{H" aHlilq_[_' {'{)[11,1'{)].

d. ()lht'l' in()( I('_q

The, t'liaht s(xlut no( IIILISt bt' d(,termim'd cat'l')

in lh,' pr(']i_ninaC_ design. _uttl _t s<,qu(!nc(', it'

prol)Cl'] > UtUlC(']% ed, ,,_,il] dcl'in_, 1lit o[)cruti()ntd

Fl'qLII/'t'lnt'l]{S ['()I' 1]1(' Col]tl'o] Hys{('lIl ;ln(t,}l(qlC(:, tile
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FFIa.IOF'In,)tit'sI_f ('OFlt.t'tJJ.This, t'tlUpjOd with a

I'LiilklI'(' aF]tF]\S[b;, h_.ill hi' LlSt'tJ it) t'I)i]:ph'iclv (It'

Icvmim, the primaFy ;rod \avhms :t]lcFua|(' or

bLL('kLiJ] IFIOI]t'S ()[ O[)('l'aJ[()ll. :\ f:lai()i' tILIillb1,1' ()f

l::oI[cs ol" COFItF':_I[X',}IlUdI[::_SI':Icst'ri[)ct]ab(ivc

art' pt_ssiblc. M()st of lhcsc Fmxh's au(' purely

IFFis,_hm-d:'ix'uth'n[ and Inusl I)_'t'_)llsitl('t':'(l['(IF

I'auh :)LtF'iJt'tllltI' nIJSSJ()FI.

The Icl'l]linaJ modt' of :lpc:'athm iFl_ol\ctl ill

lhc oF'bilal (Jockin£ InaFacuv:'F" of lwt) salcJlilcs in

t>F'hi1_ill Ix, IxmctI on lhc p::F'ticui:u' dc,_i£n of t}Ft'

tt'Flllitlal st'llstil's [IFI(] _h(' |t'l'rllilla]. _llitlt[lltJ(' t'tttlil>-
TI/i'FII i}FL{I iS LlSt'(I. i\ lttl'_(' IlUllib('l' o[ IX)ssibh'

lllt>(Jt's t'xJsi wil]l FIILLIIFIt'tl Sl)aCt'Cl'(/l't wh('I'CiF1 [}F:_

[Jl'imal'y II/t)IJVL' is it) l'ct'()vt i' thc pih)I (o1' crew)

al:(l allow him to participate iF: the naviKation and

CoF:tro] of tlu, spa('ccraft. Clearly, mod(:s of

colltl't)] ('OVt'I'iI:_ SUCh ['light pht)llOlllt_F:OI1 LtS aboFt,

l't'-t'llll'V, ol'biI Illttllcak(2l'i[l_j CtUo, c'a_.'h using

a con:biFlation of £round-bascd, on-boaFd and

manual S('FIHJFF_ all(J torquing, may bc Z'cqtliF(!(] to

:ltrhit'\,'t' a Woll-illtc_I'at('t] :_Lli(laFl(._C' /Hid _:olltI'ol d(?-

sign. In addition, sl)ct:ial mod('s of UF]Fllal]llt'd

_chiclcs StlCh LISa pJt:ttli:'c-tL_i,:iIl_ FIfO(it, a F]fodc!

flu' obtainin_ a st:u' fix, etc., arc conceivable.

5_._ _l_)!'si,k.'F} LII" Spact!crt}fJ Cont_'ol 5ystums

,,\n t,xampl(, is 1>vt)_ ith'_i to SlF_W spccJfic (Ic-

_i_ll I)tU)t'('Iltll't!5 fill' :tttitulh: couiI'I)] s,_tf'lns.

[4":'OI11 a _'.i\ ('F: \(!hiuit! t:t)ll['i_ul'LttJoll alibi fol" L_ ]()0-

n:.ut mi (7-tI) kin) o_'bit, :i re:lotion wl:ccl/_::s jet

tiu:_l n:odt..%'st:m: is to t): dt,si_ned. Consid(u' thc

t'_)lJl)x_:IF_ prM/lom.

a. PFt>bhm: slatcmcr:t

(;JV(!I1 _ht' i'(>]__()½_'Jn_ control and spacecraft con-

fi_urLttion sp{,tificaflions, (tCSi_4F1 a dual motto l'C-

action whccl/:4as jut LHtilLldC contFol s yst(m:.

Orbit

iAfctimc

OFicniation

i.t !(1Lli I't_Fll (_Ilt S

No slip rin_s

Acquisition

,'4p(, c i fi c::t ions

4DO-naut mi, (74() kn:) cir-
C LFJ.:lF

On[' 5'car

Yaw axis pOiF:iC(l It> OaL'ih

local v(,rtical it> fill°, s(:/laF

al'l'a)' tact! perpendicular to
sun line within t5 °

Thirty rain aftcr scpara-
tiC)F: fFom booster, maxi-

Fnum initial body rate 1°/
scc in all axes.

\,' e 12i t'iL_' C i, :: i/ig [i__'[2t_i tt.[ :_

The vchiclt' configuration will bt' tilt,
sa[Ill' :LS sht)_,_,rl] ill: the sketch (it" Section

D-I, with !hc ft>lltnvm£ spcci['ic In'Op -

('F'ties. Vehicle inert[as for t_._o solar

:t :'l'a)' [l[:£lt,s

l 1 1
xx ,))' zz

For 0t) ()' l°00 I (iIl 115

t,ov _pt) !!0' 11)1) 12_0 12.)

_:)lar art:t,,,ill'c;: ,>0 ft2 :x' (5 x ,} l'tc:_ch

p_:ddL,) .1. (::_ m 2

(:as .i,,lh'vcF' arms 2. 3 l'lall axe.< (7. (;:_ill}

I).

Vchiclc dimcn,_ion

ContFol hl_s

-1 x -1 x 5 fl (1.2 x .'2

x 1 . 5 m)

Thc F't'quircm_'IFI ft)r climinttti(>n tit'.slip lun_s

(It1 th[' So1ktl' Lit'I'Ll,3 tilt'tillS thtl| Jh(' i:I\VS th'l'i\ ('(t iF]

F,cctJoFI (:--| ::l't' a[tplJtablc. These ]LI\_.SLit'( _ sht)½_,rFl

in Fi£. 38.

C. ])isltlFbaF1c(' I(>I'(ItlC'8 LIIl(] IIIOIII('IltHFI: StC)l'a_20

Fcquirt'mcnts

The calcuiatiot] _ff (tislul'l)ancc torqucs l'()l' lhi_

example is limitcd to lhose dLlC) to sohii" Fat:ill[on

a_l:l f4ravity .aradicnt. OthcF' torqucs arc t'onsid-

OF'el: nc_lJ_gillJc irl (x)n_paFisol:. hl practice, all

t()l'quc5 IIILISi bt' t!slitll/t[(?d,

(1) Solar Fadialion torque. _ will :tsstltllL_

a O. 5-ft _(_. ,_]_ offset bctwt'cn the cctlteF" Of ,uravity,

and a 50% rcflt'cti\ ity yiehiin_ an cffcclivu radia-

tion pressure 1. 5 times that for total absorption.

The projoctcd areas are 50 sq ft (4. 65 m 2) for solar"

array, 20 sq ft (1. 86 m 2) as seen along the pitch

or roll axis, and 16 sq ft (1.49 m 2) as sccn along

the yaw axis.

h: th(' case WhcL'(' the sun lies in the phlnc of

the orbit the torques wit: bo cyclic except t'ot' t'cc-

[if[cation _hich ot,t'Ul'S bocaLISC of (?t:]ipsc and .yaw

control law (scc Fi_. 39a). In the case whcrc the

._uu Js pcr[)cndicul:u" to the plane of the oF'bit whore

n:> c:clipscs OtJCLll ", the tol'qLIO will be p(?rio_lic in

imu'[Jctl spacc. ']'h('n, the net tnontclltun: (}la_l_('

per cscJe will bt, zero. The COFllpoFleI:t t)f l]loi]lcn-

t[llIlill il:Cl'ti_[ spacl, lS shL)wI] for sLIn iFlt:Lillatioll

of 0 ° in Fig. 3[)[).

(2) (h'avity gradicnt torques. The torques due

to the £ravity potential have beon treatotl in _cc-

tJon I)-2. By applyin£ tho vehicle parameters to

the equations for determining gravity gradicnt

torqucs, the total momentum C}langc [)t'I' t)l'[)Jt [:aFt

bt_ d('tc:'n:int!d and is plotted in Fig. 40. ._incc

th(" rotation of th(_ solar aFray changes thc s})a(:c-

craft inertia, tho mon]entum chan/4e is :i fUnCliotl

of tho iFlc]intttJ(/n of the sun with ]'espoct tt) 11:o

_n'bit plane. Th,.' stored momentum is p]ottcd for
throo sun inclinations. As expectod, the space-

craft is unstable with respect to gravity toF'qucs

sine[ thc z-axis is not thc axis of pr]ncitnd Jncrti[_.

(3) Total Fntmlcntuna rcquiFcmcnt. Thc c) cli-

ca: valL[c_)t=I{:]-)-t_-_i;({_[_::-:i]O:VF£-IF_'_i_4s. :_ga and 3!Jb

will bc uscd ttt Ix'[)vide iFfformation f_)r lhc sizin_

:)[ 1[:¢ iF:cl'lia wilt'o[ A conservative VLL_[I(' (ff

cyc/ic::l moFncntunl would bct). {)2 ft lb/'scc (0.27

ln-l:('wtoF:,_ ) gravity t::':tdient (hci£ht in Fi_. 40) and
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Ill - ll(t\V (I )H_
0.01}_; t't-lh/se¢' (0.()08 ) t<)I' _(_£," ra(lia-

ti_xl (heigh_ iH Fig. '?,'.!). Thusc :_m' _'t',1(k' t'sti-

nlatc'.<-+ fIlr 1}tc + pYetitniu;,Y', dexi_t b i),li f+)vl!lu;+*ci>,
_I+ wtlJ ]++' _(++'II, +IPPEI _l;tt +,I +)L' <H' B(.'tI)tlIl;tt"_ it+t-

t)oPtRII(',O |+) th,u l()t;i_L HI()I';_Rc' P,t+{t!li I'(.Hll[+:l[_.

()kr('l" t';[(']l orhJl flit, 111()l/l('llltllll :_[ldt'(t _,) t!lt'

._vHt('nl. Wi}} b¢' l.h_t{ _._,}iJ{'il t_ IH)I t ,%_ ]J_ <t,.'+ (; i:4', JL,>

gi'ad_cnl f,H' ;' 4.-) _+will a(Id uix)id {}.l}m,]2 ft +i_),,"2;t t"

((), ()7] ill-t1/,'-+) :tlI.tJ ."-;tH:li" N;.ieihtlJt)]l Ic.li' + := I) wi.l].

oJhl 0.()[)8 tt -]bi'({). i)ll m-n./_) _c_ Ut.l' <_Fbit. Thu
mt:linathm of _ :: I) is the ,.vor_t _aBt: fur ..4_)l:ll'

radiaiiun .,-;[llttt, the IIH1X_IIlLIIi/ t'('[[[)S(! l illlt' I)li'tll'$

al: lhi..4 Jltt:[illalioi;t. Tht + _t'Ltvi{.'< L_l'ulJJ.t!i+ll+ di,'laLt,4

the must ._[vJ.nmciq rcquiYt,mcnl. }-nt/'_P'atin-!
(). ()6 !'t-ll)/,_uu ( I {)8 Ill 11,"S) tJ_t'F tIiC 525() (lt'[)il_

ill OD_C .y('tlF) _et+. i;;lt'Jtl[Sc {Ji :tl)[)i'{Jb:ill_;t!c'[',' 125 lb

sec (557 n-s) is obtained.

(-I) lJ¢',st_il ()l' :/ h)rqu/ t)l'l)dtlc'Jii_ ,4\Dl(qii. 'Fill'

lt>l'ClllC'-f_I>_ittt'Jit< _ ,'-ix,, ,'4tt'i]'_ "lt_tl_l t)l't)\ ]ill' ,4t]l't'ic'lt'lit

Jn]Imi._(' Ill ()Vi'i't'(Hl]( > tilt + 3('cU];}I' crli,ct._ ()[ <lJ_

turiJanu(, t()FCjtl(.._ anti i/lti'4l ill' d,,,_i_n(,(] t() [)l'()_+ i(Jt'

tht, IlltilJltltllYl ._, >,It,ill ',_.t'J<Lthi _hi[<, it{it :qll+t'cd;tbL'>

Fc(lcic'Jl) 7 +.\','4h'ln rl'lhtbJiity. ()nil lk_()(it' thl'+t,

.5('\ (!i.',:i] {tl)i)l'(){lt'}](+_ _kill t)l' C't)llll)Lii't'(t o "I'ht'_(' ;IZ'('

tilt.._iiillJlc ()n-t)fr (()i. t't)illl':ltd()l') tll;i,<_ t>X[JLIl,'-+i()ll

('()lll/'_)J :g_, ,-4l('lil tl.SJn_ _:t,'-+ ,it't.S, LtlHI lilt' t!tKll till)el('

S y.'-Jt('HI LiIJ]JzJlI_ lhFtiHt {t('Vit'('14 (_t:-; .it,(.+) _tnct ill()-

I/l('llitHt] ._glt)t'ti_t' (lilt)lOll + (ll'Jt, I'll Jnt i't J[tl i'].yv<ht'{q_)+

']'tit' BJlllpl(' /)R-()ft' ()Y ctit]tt'.:_c't()i' t'I)l]{l'l)l ,-J+y.b

It'iu wiU i){' :i{'u('l)lahlc jr' lh(' )'c.+ull_tnl t;,{)d,y i':+lc,+
dF(' tit)| tO() [lJ_h ;tilcJ Jt' lilt' iHH t'(ili_tll]][)l]()l] C)\t'i'

tit(' t't+Clttil't'(] ]il'Ciilil(' +i(1('+ tl()l ;Cf)t)I'Ct hit)iv t'XCt'C<t

the' t'qLliV:LIt'Ill WCi_iil )'t'(lHll'('(I f{)/' lilt' tI/()li]('llttllli

_{()i'ag(' .sy+_l{ lu. :\ I)h)cl.: ll]:_t';tlll of ,'-iLJt'[t ,.i .'4\_

If'ill i+ +h<lx>,/1 ill I,'i_. 4t; lht' ,'4,_,_1_'/1_ f)l't>clLic'c,_ :i

limit ('.yc]_ ill :tttJttith' t'i'l'(il' \l, Jth t'i'['()l" t'{ttt+>J _i_

shown ill lilt' piXl._t' [)t)i'll'_jl i)f i"i_. 12.

Thu c'h()Jcc tit' ac'cuh,r_ti(m (h>i'qu('-t(rin('rti_ r;tli())

_h t>cm].s !ltl thc ii_iltu] _ucllti:;iticln coIl<iiiJ()ll,-- _)l<l
lilt' ('ht/i';lclc'l'J,';lJc:-i Of th(' +t'ilSol'. :\ t()lh] !ttl'ti_l

[)ur tt:.:iS {it" ().02 {t) (O.()9 n) adcqm{tcL,, scllistit's

lht_ til'fltlJStli(l]l t't.?(i!i[t1(,t!!f?ti!. \< it') ]('v('u til'lrl ()[

2.q [i (l)o(;I ]it) :ill ciftJttl(h' ('e'i'(>t' (]ca(] /{me <H ().7,',

h\F;lc!Ft'Si_ _[" ] ':, FtHe-IO-I){iS[II<)ii _:_iH ()1 I(), ;ill(t

tlt?_li_ilJJt! ltt_lt' (It'll1\ \yell.! ('}lilac!it lilt' .s;_ltll)lc! <ct}.

<'llhilicsti. '1"}/(" Ft!stiJliil_ lil'_;{l c \t,ic i)cri<.l w:_._

800 s('_' with :{ linlJt ,",_ h_ i';tll' <>t alli)i'(>>:inl,_ie],,

0.()(}2,-I' /.'-;t'c. l"()l' filF+.'C! <'h{tilllm]+.<4 ,if _II)t'l'ttlj<)rl lilt!

[(+t;_j _l]/fitl_S t` i.t!f]!lil,i!lllt,lif:. 4 i'lii' {l]lt_ \l!;ll' W[i] I)t'

:il)pt'+lxii_latC>t\ ::;I){tf) ill-St'((t3,-tl)() _i-.4), <_!' P'_t' :_

t'f)ld _[iS [)tlt'{ltl]{llit" S\+"41t'111 like IIJ1FC+_('tl ()t' ;it'

_()11, {JlJI)F(ixiII]L{II!i', ]_t) 11) (-);]7) ill _tl'tJ I't.+(lliil't't]

['<_P' the R;IH :til<i laH],;l_e wt'i_ht. "l'hi._ wraith!

i'c!t)l'O_c'ii),q ;t [Hrl4c Fmi(dh)ll <_t' tilt.' l<)l:l[ s;qt'l}[)c

wc[,ahl ;rod sh()_:ht hc _'(_{t_l,'c'<l. it" p<x_._ihh,. I,'<Jt'

J<)w hri{l\ rttic'._ _ll( tl H.+4 ![!i. _, _'_ltJlll t)J'll(Jtlt O_l

lhc lIl()_l HJ<£tlith';/H) lt+Flll if4 I'/\+<<tt,l'(7,_7,S. :4i]i,'t'

1his c!xan_l)]/, ]ls('.s ]': }l\_tcI't's[s, _ ()l]sitl+.,t't.,(] ti

[]FCStHIt S{LIIU (it' lh('-;:t'l Jitli[!, :it/c[ iL'H()t'_¢.'4 11II/t'

dvla>, wh[<']/ i_ :liD<) ,_i_t_]ri<.:,nl,. f)r,;_<,i],.;tl <7<+

S[_I/ tl,'()/I]d i)Fil])Hi)[k Ft_SII]1 ill [ll("}'O[tSt'l] _H_ "()i_-

Stlll"t[)tit)ll fill' lhu <m--(>JLf +_H1tLi:t.

lhc ,'-;,y,s|('lii JlH() _L Jl;il'(J iJtuJl t'_,c+]t ', tilt' OI]],]. _:_._

l't'(ttlJl't'(i i.<4 Ih;it h) I'('[11{)%1' ,%t+)l'('(] lIH)II]('llltllll till('

t() .<4t'cLIIHl' I()I'QLI('H _zil(i 1}ltil it('( ('_4_%ti'$' i'c)1' illJli:iJ

HtlIl ('{_l'l}] H('(]HJ+_ilj(lll :lli(] sllt'cial )II(>(h'.'s I'/'(ttlJ)'-

J[l_ _+}](' tl,'4t> (if _{iS .i,'l._. }qi_tH't' t-1 _III)\_.S lht' t.bl;i

(';t[ ('l't'III + Hl/_l('-_ttl_tiJHi' l'_tlt J f)1')1 ['()l' I]Ic .'-J,$ .M clil

tltlr]t'i' lhc f'l'[t't l Ill :i t t)il,_IHi/l tJj,'-;ttti+'bttil('t ' I()t'qUc,

(;t) Xtt)llil'lHt/lll +-_l()l':_,,_)t' :+Tslt'lll, Tlic l'JY_[

.i<>h t,> t/(, {rt:at( d ill lh< ,h sJR)l <)1 lli_, D.TS[( It1 trill
t)<' ltl ,'-;JA(' 1ill' Jllt'i'l}_i v, ht't'i_ ;ll](J dt,l(,i'mtl_(, lhc

Ii)l'ttHt, i't,qtlJ1'(,t]l(,I]l_ (HI thf' (IFi\(' l]l()l()l'. 'l'}l('

l't'({li;l't'[/lt'l/l.<-; r()l, pjl_h ttl](J i+HII Ft'{tt'[J(.qt ,.\h,.(.l.<
;ll't' t]t'lt'l'lllJ11('el _<'l);_J':Cit']\ fl'()t)! tti<J_(' l+t)l ' l}i('

t_iluh/i'(/It v,h,.(,I _i>_in_. 'l'h(' l>ilt'lt ,rod r_>ll

X_,t/,'t'l,_ {_i]l IX' I'('(it{Jl't'tt l.I) Ht()l't' lhl' i]l(iliit'lttltlli

(itlt' 1() h)l'q[l(>+_ _A}]Juh Ltl'<' t',.t'tiua] Jtl Jlit'l'IL:lj .I[)_ic('

Ltlt(J J() ,'51()t't' tliP I1]t)lll('tittllii whit'h Hltl_t tit, ll';£1i_-

ft'l't't'd ['l"()lll Ltil()lht'r ttxis tc) that )+)(ly ax]._ as tilt'

\t,hJt+]l ' l't)l:llcH in Jll('i'liLIJ ._fxt('e. Ill the tJisttlJ'b+

;il](>t' {()l'{ttl(' t'{l]t't.!lL!tJ()lt,"-; :t I)(+;.t}q C:,ycJicLI] ili()iiiC'lt-

l[llll S{{)t'H_O Ft!(Ui[t't?lll('ltt ()l" ().(}_(J [1-J+i)/"Sct' ((j,{j:g-)

Hi=l],:4) WH!4 t](_lt'i't]lJH(!(t) JitC'J/l(litt_ the uffet'l_ of

I)o(h 14ra_,it\ _mtdJcnl ti)l(] S()]Li[- z";t{]J;zti<)lt. [si _on-

el'i_l, tilt' Wile<,].,4 ltli].<-;[ :_]Htl t.+t! c'ap;_b](_ tit" sl<)r{Ii_

thO t)f](]\ IIt()llt(t/]}llUH |'t}(JH]l'(_d f()p t}lt'r <<-;I):tc'el'P;tft

-3
c>rl)itai r;He whi('h ]:--: ].03 x iO lad sut' <it+ 0.17

ft-ll),,'sc(' 0).23 _n-H,,'.s) it' it (){'(']IFS in ll_e piluh
',tXJS c)l" 0.]0-) rl-lb,"S(!c (0.]43 ili-ll/S) in the roll

axi.s. (.'_)li]biltill<a this wJt}l lhe (ti,Strlphan('_ t()Fqtlu

)'(+'(])lir'cl_telltH, l]]()l]lCUll])nt st()r-a_e of !).250 ft-ll)/
St'{' (().:_4] IH-II,/S) will i)e t:}l(/set], if we c_ht)ose

t[l(e IIt{JXil)ll]1tl a]h)w;dAe speed iJr the II]()ll}l" l() })_._

:1[)() P;i(],'F,t)(', t}]O !'[\wht)t:J. JilOFti_t "Pi]eH t]ltlS1 I)f3

+ ,> .) k _4_ ill2().3 x ]0 -'g +slu_ It _ ({).lJ3 :,: ]() " ). _gi)i(:t:

l}lt_ ()F})JI_J] lll()ll)('rlflllli ill _t]l\ t)ll_ _Ixis (';lit I)C

lFaH,'4f('l'l'Cd t+);ill> ()t}IUP _JXiS, (_)li"ill_ t)r.})[I;i[

III[iH(+I;VCFS, ;1 V,'h£!E'I ()J" lh]s _iZU Will be used in

I)()lh 1}It t)Jl<'}l ;in*t r'<)[] ;t',;(;s. This I'C_I)FC_cNts ;I

s_)lid stt't:[ t_/}lt!c'J :lpi))'cJxilli;ltt!]y 4 Jri. (1(). '2 cnl)

]I1 (!i_:llllt,ti,l', ] ,,"2-hi. (1,2 u.]) ti_i,:k and v,'t,iuhin_

H[)})t'{)XiHl:t_,('ty '_) ]l) (_I. f} 1])+

J I J S _%r ( I [ I t { j t ' ( ' _ i ( ' _ t } 1 ( I 1) J t (_ _ I and ro.L] lll()liit!il-

tti]i/ ,'4tc)l';.l_l.' t'[ [) bJJ t y l'±'C) lt] th(! 5tgttl(]pOil]t o[" Ll('-

(lui.%tion. (;t'iit'l'U_]]_y v,h(_(qs will not ha_c sut'fi-

c'Jt!nt ln()1n(,l'itul:_l ._t{)l'tt_(' UalXthil]ty to ('t)lltJnuc

t:h{' J<tlJli;xJ t':ttt's+ I)LtFJl]D4 _C(lui._Jtion thu body

r_{t('_ it/Llxt lit > Ft (tuct>cl h) u ,'+ul'fJci(mt].y 1()%_ 'r l_] Lig

l;J[Ll(tt' _(j L}tLtt the Wh('('l ix :tbh' tO store Lilt! t't'-

.<4Jdu_ti llit)lltt'tltLltll J.I] tht, b(idy. Ill lll_lll,y CLI+_(!_

thJ,_ _.{ll t'e)l'J't'N[Jtl[11] tt) the t:tH]tl.'_.Lctu£ _OF\'O lJiltit

t'.yt:l( ' ):ti.t('_. ["t)l till' ;tl:ttuJsJtJ()li s,ysi.ein c]c.<4]_il,

_._.}li(:h IH (IJ.st:tlS_t'Ii l;t[('t; Cl l()l+t]Ut'-{tJ-iil(!I't]a

t'LttJt) {)[" Lt})[)l'()xJ)]l:tlt'_{\'. 3. 2) x 10 -'t rad/,_c c2_'' ' ,,,,il]

t)(' (Jc'[cl'iI_]ltolt [IJ intl('{ {[it' at'(tuiMtJ(/lt :-;yHl, cin

W('({tlJl'('Hl('l]l+_. J[ _Ii t'(ILt]\_th!iH h,y_tet'c_i,_ of 5'I;,

i_ tl._t'(i ['()i" till' d< ,sigH, ;J }JlHJt ('_(:jt' I"_l[( {)[ {tl)-

I)l'()xJIl]_!t+C].,_ 0. U5 <' /_t'c' v,J]l cxJ,sl. 'l'hi_ l';ltc'

(ti('l;llt'S xAh('('l Hit)lilt lttLltIi _t(>I'N_>t ' t';il)abi]itv (it

;_( [t;;t_t l).U-_ rl-u) ._t:, 0J.f)_ n-l_l,s), wcH w_(]fill (JHr

;_P't!'.'i(>ll_[.\ d('lc')'lt/[!lcd wht_t.+J sloi+aRo c:qxihilH>.

I"tl)'lh('P, ti n_lli 1)(' i'!'qtlil't'(t thut tnl(tt,t" lilJl'111:il

tlt.+('t'HlJ()ll []it' lilt)llt('Illtll]l _t()ra_(, (Xl[);ibJ]i[_ It('

_LIt'Ji V.+_ ill ili:txJt_li,4f' (ht' tillic ])t'tw('t:li #u,_ .it,t
iJt'ill_.'+. _Nt()tt' [l'{lIII toil,4. -t4 that, tift('c _,t_ Js

rJt,cd, it L_l)f)t';it's 1hut th,' lilt>st ilc.sir_d_Lc, uttitudc

_).()tllli [)c :t[ zcl'cJ t'l't't)l' _i_J, lltL] OF tti;tt ±'('ln'l'+_('nt('d

b>, <<)t)llJl(q(' ,',ht','t (i('_,:HLil'tttj(,llt (_t). IL" t]l(' t,vht_('J

tll('llt('IltLlli/ jL'g It()1 t:()lI1})Jt'[tl I't'I110'_('d ()1" it' [(lO

r+lll('_l i,_> ttlhh'll [)\ tli(J _2;t5 H ystcn G thu l'iltu._ a[tJtLlth'
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will occur at (b) or (c), respectively. With a

torque-to-inertia ratio of 3.5 x 10 -4 rad/see 2,

a rate-to-position gain of 11.25 and a hysteresis

of 5%, a gas jet firing will remove apf)r<)ximately
30% of the wheel' s saturation momentum.

If the jet firing is required to coml)letely de-

saturate the wheel, a spacecraft angular rate at

the time the jet is turned off, approximately
0.0015 rod/see is necessary. For a syslem with

the same gala ratio and hysteresis, a Uu'que-to

inertia ratio of 3.8 x 10 -3 rad/sec is required

to completely desaturate the wheel. The pres-

ently chosen 3.5 x 10 4 rad/sec 2 will remove

only 30% of the stored momentum.

Yaw wheel size and motor tpf_quc. The yaw
wheel must not only be able to store the same

momentum as the pitch and roll wheel but it

must help to perform the yaw turn required at

high noon. If it is assumed that the yaw turn

is to be performed within 15 ° of high noon (solar

array angle equal to 75 ° ) and if it is assumed

that the turn is to be performed strictly on

wheels (i.e. , no gas is to be fired), it is possible

to determine the yaw wheel _md motor torque

requirements. The time for the satellite to move
15 ° in its orbit is 250 sec. Then C_r a rnaximun_

effort turn (c.onstant torque) a._ sho,vn in the fu]

lowing sketch, the motor torque rcquirect is 1.25

in. oz (0.008!1 m-z). ,.\t the maximum spacecraft

rate, the moinentqm which must be stared is ap-

prt)xin_ately 1.5f; ft-lb/sec (2.13 n-m/s). Since in

a pra_.ti(:al mot()r it is not possible to a_taiu full

torque as the speed increases, a 2-in. oz (0.014
m-n} tNotor is c}7ose/1. The monlentun_ it) be

stored is 1.SG fi-ll)/sec (2.13 re-hiS) f,)r the turn,

plus the 0.25 ft-lb/sec (0.34 m-n/s) (storage re-

glfirement (.apabiliLy ue(essary f_r tnoil](.Hlttlu]
transfer from pitt.h an(l/or r(Kl wheels). The yaw

wheel inertia will he :/.2 x 10 -3 slu_-ft 2 (4.:3 x
,)

10 -3 kg-m _) for the 500 rad/sec top motor speed.

About a it-in, ctiameter b.v 1-in. (2.5 era) thick solid

steel wheel weighing approximately 7 ib (31 n) is

IIeCeSS_tF% .

BEGIN TURN

- 90 °

YAW ANGLE

90

MAXIMUM POSITIVE YAW
,_ _CCELffRATION

t5 ° a O_81T /_NGL[

I

I M_,×IMUM N£OATiVE YAW

TURN COMPLE TIZ

Yaw Angle During Noon Turn

Pitch and roll motor torque requirements.

The torque requirement for the pitch and roll

mr)tots ma.v be based either (m the high noon"

turn requirement or on the cancellation of

spacecraft m(m_entum before tim phase plane

trajectory reaches the ()f)posite s,vitehhng line

(trajectory d in Vi_. 44 is such an example)

thus causing unnecessary gas to be fired. Each

time a ,let fires, ab_ml 0.5 in. -oz ((1.0()3(_ /ll-[])of

torque is required to provide at tra,iector,y 1o keep

the other gas .jet from firing. Vor this example,

it has been assutned that the taw turn maneuver

must occur within ± 15 * of the noon condition.

This means that the pitch and roll wheels must

be capable t)f transferring the maximum mr)men-

turn st()red by each to the other in 250 sec. l"or

the maximum effort turn as shown in the previous

sketch, the torque required to accomplish the

transfer of the maximum momentum (0. 250 t't-

lb/se(:) (0.34 m-n/s) is 0.71 ill-oz (0.0051/m-n)

in pitch and 0.82 in. -oz (0.0()58 m-n) in roll.

(1ommer('ially available 1 ill.-OZ (0.t)07ll m-n)

m()tors are chosen for the pitch anti r()ll tat)tots.

(b) Mass expulsion s v_-_tem. The mass ex-
})ulsion system is designed on the basis of three

requirements: first, the torque level is deter-
mined in concert with the sun sensor linear

range and to obtain acquisition within the re-

quired time with minimum gas consUml)tion;

second, the total impulse requirements are

equal to the sum of separate impulses required

for acquisition, removal of secular disturbance

torques, reacquisition, redundancy and con-

tingency and;third, the design parameters are

determined on the basis of practical values of

equivalent hysteresis, dead zone, valve dynamics,
etc. F'or a 1 ° limitation in local vertical, if line

maximum orientation pitch occurs at the same

instant that the roll error is maximum, then the

errors in individual axes must be no greater than

the 0. 707 ° to meet the 1 ° requirement. The

maximum dead zone in pitch and roll axes, for

this example, will be designed to approximately

0.5 ° to allow for sensor err<)rs, noise and mis-

aligm_l cat.

As will bc shown in the acquisition design, the

thrust level per axis (usually two nozzles) will be

about 0.02 Ill (0.08 n). :\n impulse of 210 ib-sec

(!!38 n-s) ft)r 1 yr of operation will be required
t'ron_ the folh_win_ s(,_rces.

(Lb- Se c) (n--s)

Disturbance torques for 1 yr 120 536

Initial acquisition 36 161

Three reaequisititms 3* I3.4

20% contingency 32 143

Required because of pressure 19 85

regulator limitations l()T0 210 938.4

*Assuming that the IT]axitIlUl]] u_omentum

()f all the wheels is dumped into the

body, the reaequisithm requirement

is still Less than 1 lb-sec (i.4 n-s).

The pneumatic gas system including the

lanka_e will weigh approximately 9 lb (40 n), as-

suming nitrogen with about 60 lb-sec of impulse

(80 n-s) per pound (4.4 n) of weight, plus a nominal

140T, allotment for tankage raetor. The compari-

son of the two systems in weight for a year's op-

eration fiuds 1he on-off s>stem weighing a mini-

mum of 120 1}) (53G n) compared to the dual mode

system wei#hing approximately 3,9 lb (172t n)

in(.tudin_( 20 11) (8_! n) for the reaction wheels,

n_otors, and (.ircuitr3 plus 9 lb (40 n) for t)neunmtie

system, pins lhe attdilional power supply reuuired
to drive lhe mt)tt)rs (estimated to be less than

10 lb).
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(c) Acquisitionsequence. For power supply

requirements and temperature control it is neces-

sary to cause either the yaw or pitch axes to lie
along the sun line within 30 rain of the time of

separation from the booster vehicle. The space-
craft initial rates and initial attitude orientation

will be assumed the most adverse, namely: 1°/
see _nd 180 ° from desired orientation.

When separated from the booster, the space-

craft is misoriented and possesses booster

separation-imparted body rates. The process

of achieving normal control requires that the
rates be nulled and that the sun and earttn be

acquired while the vehicle is in tlne sunlight. Of

the several possible sequences the one chosen
is as follows.

The rate null mode. During this mode the

solar array is fixed at 490 ° and the yaw axis of

the spacecraft is pointed at the sun, and rates

about this axis are nulled. Information is pro-

vided by sun sensors and a yaw rate gyro. The

array sun sensor provides roll signals and the

yaw sun sensor provides [)itch signals. By point-

ing ttne body at the sun initially, the power sup-

ply is immediately oriented for maximum charging
and the orientation is proper for temperature con-

trol. In addition, the need for rate gyros in the
pitch and roll axes is eliminated.

The orientation mode. During this mode the
spahec_:aft is slowly rotated about the yaw axis
to obtain horizon scanner returns from the

earth. The solar array meanwhile maintains
itself normal to the sun line. This method re-

quires simple logic, littIe gas consumption,
and ensures earth acquisition regardless of the

position in orbit provided that the spacecraft is

not in eclipse and that the scan angle coverage
of the lnorizon scanner is sufficient.

The vehicle is now in its normal operating
mode, the horizon scanners and sun sensors

provide the information in pitch/roll and yaw

to stabilize the spacecraft in the presence of

disturbance torques, and the solar array is

oriented so that the solar ceils are facing the

sun. If earth reference is lost, the vehicle will

automatically return to the orientation of the rate

null mode end reacquire the earth by repeating

the above sequence. The block diagram of the

acquisition mode is shown in Fig. 45.

(d) Design for acquisition. The following

design is based on single axis computations

which are considered adequate for preliminary

design. All details of switching and choice of

parameters must ultimately be determined by

a three-axis study. The filter in the gas jet

system is to be designed for rapid convergence

from high rates to low limit cycle rates. The

larger the rate gain, for a single axis at least,

the lower the time and the less the gas that will

be required to converge. For passive networks,

practical upper limit for KIR is approximately

15. A filter F(s) is assumed where

F(s) = 12.5s + 1
1.25s + 1 (195)

The equivalent rate-to-position gain for the switch-

ing Iine is assumed to be 11.25.* Clearly one of

the principal design parameters to be chosen will

be angular acceleration (torque-to-inertia ratio).

A decrease in torque will increase the gas con-

sumption and the time required for sun acquisi-

tion. An increase in thrust witl suggest an in-

crease in sun sensor linear range in order to

keep the gas consumption down.

Assume that the thrust is essentially the

same for all axes and that yaw rates and error

signal coupling between pitch and roll can be

neglected. A conservative estimate of the total

time for acquisition can be obtained by assuming

consecutive pitch and roll system operation. The

phase plane of Fig. 46 shows the operation in one

axis, assuming the worst initial conditions. Figure

47 shows the maximum angular rate that the

spacecraft will encounter versus torque-to-in-

ertia ratio, assuming the initial condition of
l°/sec and 180 ° attitude error. This curve is

for the switching lines for the filter that is used.

With a dead zone of about 1 ° about the yaw axes

the rate at switching, if the sun sensor linear

range is ±30 °, will be 2.6°/see and a torque-to-

inertia ratio of 3.5 x 10 -4 rad/sec 2 will be re-

quired. It is next necessary to compute the time

to acquire and the gas consumption. These can

be determined approximately from the phase

plot or from the rate diagram. An approximate

closed form solution for the convergence in a

single axis has been developed and is given by

tacq - 2Kt: 1 F2r 2 xx yy($p =_90 °

(196)

where

_0 initial crossover rate in degrees
per second which is approximateiy
2.6°/sec

F = thrust per axis

R = thrust level arm

and since torque-to-inertia, k, is given by

Fy

x- I (197)

1.53 x 10 -4 2 6 2

- (3_5 "-10_) x2tacq 11.25 . x

= 1720 sec

(198)

which is slightly less than the specified 30 rain.

Here the torque-to-inertia ratio is assumed the

*In practice, the effect of acceleration and higher
2

terms in the expansion I.'(s) = 1+11.25s-14.2s

+ . . . must be considered, These terms may

alter the limit cycle switching line, and hence

gas consumption, significantiy.
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samein bothaxes. Figure 48 shows a few cycles

of the settling transient for a similar system.

Because of the differences in inertia, and if
-4

k = 3.5 x 10 , the total thrust should be 0.014

lb (0.062 n) m the roll axis and 0.22 lb (0.98 n) in

the pitch axis. We will use a thrust of 0.02 lb

(0.089 n) per axis or nozzles acting in pairs

with a thrust of 0.01 lb (0. 044 n). (Some of the

foregoing calculations could now be refined using
the correct k,s rather than the same X for both

axes.) A crude estimate of gas consumption

for acquisition would be {assuming the jets are
on at all times)

Pitch and roll (1720)(0.02) z 35 lb-sec

156 n-s

Yaw = --I _0 115 (1/57.3)_ 1 lb-sec
r 2.5

_4,4 n-s

Total = ;36 lb-sec
= 160 n-s

If, instead of ±30 ° , a linear range of ± 15 ° is

chosen for the sun sensor, the necessary k to

keep the solution in the linear range of the sensor

would decrease by a factor ()f about 7 and the ac-

quisition time would be increased by a factor of

about 10. The resultant gas consumption would
-3

be up by onl5 _ 40%. Vor the X of 3.8 x 10 ,

which provides for perfect wheel dcsaturation

(see Fig. 44), the sensor linear range should
be at least 65 ° .

(6) Sensor design_

(a) Sun sensor. The sun sensors located on

the array for array error angles and on the b<_dy

(or array) for yaw error angles will have a
linear range of ±30. The operation around the

null and the absolute linearity are not critical
since accuracy to no better than ± 2 ° is all that

is required for the 5 ° pointing requirement, in-

dicating that simple shadowing techniques can

be used. Although the calculations of acquisi-

tion are based on a ± 1 ° dead zone for yaw, they

are crude and will not be seriously altered with
the 2 ° dead zone.

(b) Horizon scanner. The scan angle, X,

(se_ketch} for this System must be determined.

Two requirements aid in the selection of this

angle.

In order to ensure acquisition, the edge of

the scan pattern must scan the earth for any

spacecraft position. At 400 naut mi(740 kin) the

earth subtends approximately 135 ° at the satellite,

indicating that a half angle cone of at least 24 °

is required to ensure acquisition. This, however,
since it is at the very edge of'the earth, ,.vii1

provide a very noisy signal.

From the linearity consideration of a change
in pulse width per change in angle, a scan angle

which normally crosses at 45 ° of the portion of

the earth that is seen by the satellite is reason

able (see the following sketch).

I / \ l?,quivalent earth's radius seen

at 400 nautical miles (740 kin)
is approxin_utcly 1520 nautical
,hilts (2815 kin)

The scan angle for this configuration then

should be approximately 50 ° . The uncertainty

due to ionospheric noise considered to be about
7 mi (13 kin) indicates that a scanner error of

about 0.27 ° in roll and pitch is possible, Other er-

rors due typically to optical irreKularities, mounting

misalignment, thermistor balometcr characteristics,
etc. , must also be considered. The proper scan
rate would be determined on the basi.'_ of the

tradeoff between inherent scanner signal-to-noise

ratio and system bandwidth. This is not a signifi

cant problem for a 400-naut mi (740 kin) orbit.

Typical system bandwidth in excess of 3 cps is

easily attained with a nominal scanner rate of 30 rps.

(7} System description. The system block
diagram is shown in Vig. 49. The reaction wheel

size has been selected and the torque require

meats of the motor obtained, the gas jet has been

determined and the impulse requirements per year
established. The sun sensor and horizon scanner

requirements have been briefly examined. To

complete the study, a reliability analysis is

necessary but has been excluded for this example.

The acquisition noon-turn logic and solar array

drive must, of course, be included. No special

eclipse requirements are assumed. Reacquisition

of sun must be studied and if only a smai1 amount
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of gasis required,it canprobablybeperformed
uponemergencefrorneacheclipse. A simplified
blockdiagramof thenormalmodeis shownin
Fig. 49.
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SYMBOLS

a = orbit semimajor axis

b = orbit semiminor axis

d = ground range

e = orbit eccentricity

E = eccentric anomaly

h = orbit altitude

i = inclination of the orbit plane to the equa-

torial plane

i = inclination of the orbit plane to the ecliptic

plane

i O = obliquity of the ecliptic

J2 = coefficient of the gravitational potential

function, 1.0823 x 10 -3

J_ = Celestial latitude (referenced to ecliptic)

L = geocentric latitude (referenced to equator)

M = mean anomaly

n = mean motion = _-_-_

n I = number of orbit planes in a pattern

n 2 = number of satellites in an orbit

p = orbit semilatus rectum

r = radial distance from the center of the
earth

R = radius of a sphere of volume equivalent
to that of the earth

R e = equatorial radius of the earth

s = angular radius of shadow

t = time

t = visibility timev

v = velocity magnitude

Y
Z

= Cartesian position coordinates

= central angle between the subsatellite

point and the edge of the area visible from

the satellite

= azimuth angle relative to north

= flight path angle with respect to local

horizontal

Y
n

co !)COS

COS

c

O

@

k

A

P

T

"rnoda 1

"rsidereal

T
e

¢

tO

f2
e

q_

0

0

E

0

angle between the earth-sun line and

the normal to the orbit plane

= direction cosines

= elevation angle with respect to the

horizontal plane

= true anomaly

= central angle in the ecliptic plane

from vernal equinox to the sun

= celestial longitude (referenced to

ecliptic)

= geocentric longitude (referenced to

equator)

= gravitational constant of the earth

(398,601.5 km3/see 2)

= line-of-sight range

= viewing angle with respect to the

horizontal plane

= Keplerian orbit period

= nodal orbit period, the interval be-

tween two successive transits through
the ascending node

= sidereal orbit period, the interval

between two successive crossings of
the same hour circle on the celestial

sphere

= period of the earth's rotation

= central angle in the orbit plane from

the ascending node to the satellite

= argument of perigee

= right ascension or longitude of the

ascending node

= rate of rotation of the earth

= vernal equinox

SUBSCRIPTS

observer

sun

earth

ecliptic

initial value
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A. INTRODUCTION

Once a satellite mission has been conceived

to accomplish a given function (e. g. , reconnais-

sance, communications, meteorological deter-

minations, etc. ), the question arises as to what

orbit or orbits would best be suited to accom-

plishing the specified mission. Selection of the

best orbit depends upon a multitude of factors

such as periodicity, area coverage capability,

target coverage capability, satellite and sub-

satellite point illumination and vehicle tracking

considerations. These factors will be investi-

gated in order to provide a basis for orbit selec-

tion in a given mission plan. Section B considers

the general nature of the various types of missions

and indicates how the above factors are involved

in orbit design for each mission. Detailed quanti-

tative analyses of the various factors are contained

in Sections C, D and E.

B. MISSION CONSIDERATIONS

Although each mission has its individual re-

quirements, most satellites may be categorized
for general study as follows:

(I) Reconnaissance satellites.

(2) Communications satellites.

(3) Navigation satellites.

(4) Meteorological satellites.

(5) Scientific satellites.

In general, orbit design for each of the missions

will require consideration of ground tracks, cov-
erage and sensor limitations. In addition, when-

ever photographic determinations are made, or
solar power supplies are used, various solar prob-

lems (e. g., heating, time in sunlight, relative

orientation of the vehicle-sun-line, etc. ) must be
considered. Table 1 lists most of the factors in-

volved in selection of each orbit element. The

following subsections qualitatively relate these
factors to the above mission types.

1. Reconnaissance Satellites

One function in which satellite systems are

well suited is that of scientific or military recon-

naissance. Observations made by a satellite sys-

tem can provide valuable information on the nature

of this surface of the earth, and of the number,

locations and state of development of installations.

In making these observations, a satellite system

has the advantage of covering large areas rapidly

and periodically with no risk to the observer.

From a general point of view, selection of an

optimum reconnaissance satellite orbit, involving

specification of six orbit elements, is based upon

the following philosophy:

(i) In most missions, orbits of low eccen-

tricity should be selected to allow uni-

form sensor performance throughout

the orbit. Thus, for the limiting case

of e = 0, two additional elements w

and Tp (the argument of perigee and

the time of perigee passage) may be

selected arbitrarily because they have

no real meaning.

(2) In general, choice of orbit altitude de-

pends on a tradeoff between sensor power

and resolution requirements for low alti-

tude on one hand and coverage and orbit

lifetime requirements for high altitude

on the other. Decay of the orbit altitude

due to atmospheric drag is prohibitive
for altitudes less than 150 kin, and or-

bits of altitude less than about 225 km will

require periodic corrections even for use-
ful lifetimes of a few weeks. The added

complexity of orbit correction systems

and the added fuel requirement, as deter-

mined in Chapter VI, are certainly fac-
tors in the selection of an orbit altitude

for extended missions. The effect of low

altitude in decreasing area coverage is
discussed in some detail in Section E.

This factor is especially significant for

missions requiring continuous photo-

graphic coverage for extended peFiods,

where the film bulk can be quite large.

The sensor requirement for low altitudes
is discussed in Section F.

(3)

(4)

For fairly low altitude satellites, the in-

clination of the orbit to the equatorial

plane must be at least as large as the

latitude of geographical areas to be ob-

served. Thus, as an example, if there

is a requirement for complete coverage

with low altitudes, polar orbits are re-

quired (Section E).

The right ascension of the ascending node,

as determined by the launch time, could

be selected arbitrarily for missions of
extended duration or missions aimed at

more or less total coverage. However,

for short-term missions requiring photo-

graphic inspection of a specific geographic

area, the node should be selected so that
the satellite passes over the area of in-

terest during the local daytime.

2. Communications Satellites

Satellites can be used as component stations

of a communication system relaying signals from
one point on the earth's surface to another. Their

advantage in this application is primarily one of

coverage. Range limitations of conventional radio
transmission can be overcome and reliable inter-

continental radio telephone links established.

Communications satellites may function actively
or passively. That is, an active satellite con-

tains receiving and transmitting equipment so that
it can receive a signal from earth, amplify it and

retransmit the same signal signal back to earth.

A passive satellite, which may take the form of

a large, metallic skin balloon, merely reflects
incident radiation from the earth so that a portion
of this radition is scattered back in the direction

of the earth. Examples of the two types are the
ECHO balloon satellites and the TELSTAR active

satellites. Passive systems would require ground
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TABLE 1

Factors Involved in Orbit Selection

Altitude

High

High

High

Low

Low

Low

Specific

altitudes

(24-hr,

6 -hr,

etc. , see

Section

D.2.)

See

Chapter II

Factor

(1) Maximum

cove ra ge

(2) Minimum

drag per-
turbations

(3) Minimum

oblateness

pe rturba-
tions

(4) Sensor

resolution

and power
limitations

(5) Minimum

solar and

lunar per-
turbations

(6) Propellant

expenditure
in launch

(7) Achieving

synchro -

nous per-
formance

(orbit

period a
rational

fraction

of a day)

(8) Avoiding
Van Allen

belts

Eccentricity Factor

Low (1) Uniform

(e _0) coverage

over large
areas

Low (2) Uniform

(e _0) sensor

resolution

and power

require -
ments

Low (3) Elimina -
(e = 0) tion of

earth

relative

motion in

the case

of the 24-

br orbit

Low (4) Ease of

(e _ O) position

predic -
tion and

uniform

ground
track

Low (5) Secular

(e = 0) pertur-
bations

can be

largely

compen-
sated for

in achiev-

ing syn-
chronous

orbits

High (6) Increased

coverage
ove r

limited

areas for
fixed

launch

propellant

expendi-
ture

Inclination Factor

Low (I) Elimination

of earth

relative mo-

tion in the

case of the

24-hr orbit

High (2) Complete

global cov-

era ge

Specific (3) Optimum
values or uniform

coverage

Specific (4) Tracking
values station

utilization

Specific (5) Reconnais-
values sance or

coverage
of a partic-
ular area

Specific (6} Regression
values rate set to

0. 986 ° /day

for a given
altitude (al-

lows orbit

plane to fol-
low the sun)

Nod e

Special
value

Special
value

Special
value

Factor

(I) Selection of

daytime over

a reconnais-

sance or cov-

erage area

(2) Selection of an

optimum or uni-

form coverage

pattern

(3) Maximization of

time in sunlight
for solar power
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station transmitters of much higher power than

would active satellites. On the other hand, the

complexity of vehicle-borne equipment leads to

limitations on reliability and mission duration

for active systems.

Mission requirements for a complete communi-

cations system would probably aim for continuous

24-hr coverage between virtually every pair of

points on the earth's surface. One orbit design

which has been frequently mentioned in connection

with this requirement employs the 24-hr satellite

orbit. Because this orbit has a period of one day,

satellite motion is synchronized with the rotation

of the earth. In the case of the 24-hr equatorial

circular orbit, the satellite would appear to hang

motionless in the sky above an observer on the

earth. Elliptic or nonequatorial 24-hr satellites
perform diurnal excursions relative to the obser-

ver. The 24-hr orbit is described in greater de-

tail in Section D. The advantages of the 24-hr

orbit in communications systems lie in the station-

ary nature of the satellite and the wide coverage
of each satellite (the 24-hr circular orbit altitude

is 35,777 km). At the 24-hr orbit altitude, each

satellite can view very nearly half of the earth's

surface. Thus, three satellites could provide

very adequate coverage which could only be

achieved by hundreds of satellites in low altitude
orbits. Also, ground antennas could be fixed,

and tracking would be extremely simple. A dis-

advantage of the 24-hr orbit system is the rela-

tively high power required to transmit to this high
altitude.

Whatever altitude is chosen, it should be such

that an integral number of periods are contained

in a day. Then the ground track, the trace of the

subsatellite point on the surface of the rotating

earth, will repeat daily. This condition is ob-

viously desirable from the standpoints of ease of

prediction of satellite position and utilization of

the system. That is, the user would know what

satellite service is available at a given time with-

out referring to a complicated ephemeris because

a satellite is at the same place at the same time

each day. Synchronous orbits, which exhibit a

daily repeating ground track, are those of 24, 12,

8, 6, 4, 3 and 2 sidereal hour periods. The alti-

tudes corresponding to these periods are tabulated
in Section D.

For communications systems which aim for
literally world-wide service, circular orbits offer

the advantage of uniformity in coverage. However,

if the system is to provide coverage primarily in

one hemisphere or primarily during the daytime,
high eccentricity orbits could be chosen. These

orbits can be achieved more economically than
could circular orbits of their apogee altitude (apo-

gee altitude is the criteria here in order to provide

a large communication range). The elliptical or-

bits would, of course, he launched so that apogee

conditions occur over the daylight side of the earth

or over the hemisphere of interest.

3. Navigation Satellites

Artificial satellites can be used as references

for all-weather navigation systems determining

position and velocity of a surface vehicle, aircraft

or space vehicle. The conventional navigation

methods, e. g. , dead-reckoning, star and sun

sighting during clear weather and storage of

reference information by inertial guidance in-

struments, provide navigation information of

adequate accuracy. However, such information

must be periodically corrected to maintain ac-

curacy, and the replacement of star and sun sight-

ing with satellite sighting would permit this up-

dating to be performed at any time, regardless of

weather conditions.

a. Satellite navigation methods

Various methods of satellite navigation may be

considered, depending on the nature of available

equipment, data available from sources other than

the satellites and the nature of the position or ve-

locity information to be obtained.

(i) Sphereographical navigation

The position of an observer on the earth's sur-
face can be determined from a pair of observations

of the angle between the local vertical and the line
of sight to a celestial body. Of course, in order

to make these observations, the local vertical

must be obtained by means of a pendulum, plumb

bob or some other device. Any celestial body,

e.g., the sun, a star or a satellite, could be ob-

served as long as its angular position is accurately

known. Determinations based on satellite positions

will obviously be complicated by the high relative

velocity of the observer and the satellite. However,

the fundamental technique is the same. The ob-

server, equipped with a vertical reference and an

electronic sextant, measures the direction angles

of a radio signal continuously emitted from the

navigation satellite.

(2) Doppler navigation

The sphereographical technique employs the
classical angular measurements of celestial navi-

gation. Satellite systems employing radio tech-

niques are not limited to these methods. One

radio technique is based on the Doppler effect.

Radio signals received from a moving vehicle ap-

pear higher in frequency as the vehicle approaches

the observer and lower in frequency as the vehicle
recedes from the observer. The difference be-

tween the observed frequency and the known trans-

mitter frequency, the "Doppler shift," is a meas-

ure of relative motion (or relative position when

these shifts are integrated) of the vehicle and ob-

server and, therefore, can serve as input to a

navigation system. Knowledge of local vertical is

not required. The TRANSIT satellite program em-

ploys a purely Doppler system.

(3) Complete geometric determination

Systems for navigation on the surface of the

earth can implicitly make use of the knowledge
that the observer is a known distance from the

center of the earth, the origin of the coordinate

system in which the satellite positions are known.

A more general problem may be hypothesized as

follows: the position and velocity of a vehicle in

space is to be determined solely from data con-

sisting of range and range rate relative to the navi-

gation satellites. The observer is assumed to have

no knowledge of his orientation, position or velocity
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from othersourcessuchasplumbbobs,altimeters,
etc. If acompletedeterminationis to bemade
from asetof observationsmadeat anygiventime,
theobservermustsimultaneouslynotetherange
andrangerateof threenavigationsatellites,the
positionsandvelocities of which are known. Then

his position is determined as the intersection of

three spheres•

_ 2
(Xo - xi)2 + (Yo - Yi )2 + (Zo zi)2 = Pio (I)

i=l, 2, 3

where

Xo' Yo' Zo = Cartesian position coordinates
of observer

xi' Yi' zi known Cartesian position co-

ordinates of the three naviga-
tion satellites

Pio = ranges from the three naviga-
tion satellites to the observer.

The observer's velocity is determined from

• (%-@-0%
Pio = (2)

Pio

w he re

V
O -v i = (xo-_i )i+(yo-yi )j

+ (z° - _i)_"

ko' #o' _o

xi' Yi' _'i

= Cartesian velocity coordinates
of observer

= Cartesian velocity components

of the three navigation satellites

Pio = the range rate data

and P_io is given from Eq (i).

Differentiation of Eqs (1) and (2) gives the

following error formulas.

I 1/dXo / 1 Cll C12 C13 A1

_dYo I K C21 C22 C23 A2

where

A. - dx[ + (Yo Yi )t = (Xo xi) - dYi

(3)

+ (Zo - zi) dzi + Pio dPio i = i, 2, 3

K" IKv.b:
ij

(xs - x I)

(xs - x 2)

(xs - x 3)

and C.. is the cofactor
U

• 1

t ,oj: -
\%/

(Ys - Yl ) (Zs - zl)

(Ys -_Y2 ) (Zs - z2)

(Ys - Y3 ) (Zs -z3)

of the (ij) th element of K T.

\

C] 2 Cl31 61 + "Pl0 6' +6 ''_
PlO 1 1

/

C22 C23 /

C32 C33 ] 62 + 020 6"+ 6_"
P20 z

+ P30 6_+6 "

3 P30 3 3

where (4)

6i _ (Xo - xi) (dxi - dXo) + @o - _/i ) (dYi - dYo)

+ (Zo - zi) (dzi - dZo)

6'i-= (Xo - xi) (dXo - dxi) + (Yo - Yi ) (dYo - dYi)

+ (zo - zi) (dz o - dzi)

5i"-(Xs - xi) &xi + (Ys - Yi ) AYi + (Zs -

+ Pis APis

z i) iz i

and K and C.. are those defined in Eq (3).
tj

b. Selection of navigation satellite orbits

The navigation satellite system is similar in

most functional requirement aspects to the com-

munications satellite system, with perhaps more
emphasis on precise orbit determination and

minimum sensor power requirements in the nav-

igation system case. Here again, the require-

ments of wide, uniform coverage with the fewest

satellites, low transmitter power and synchronous

motion are important considerations in specifying
optimum orbits. Since navigation requires satel-

lite tracking by each observer as opposed to

tracking by a few high-powered transmitters in

the communications system, an increased em-

phasis on lower altitudes is required in navigation

system orbit design. Also, since each observer

must locate the satellites by means of an accurate

ephemeris, the ephemeris should be as simple and

easily updated as possible. This requirement

makes selection of one of the synchronous orbits

attractive. From a general standpoint, the re-
quirements taken as a whole seem to indicate
choice of eireular 4- or 6-hr orbits for use in

navigation system orbit patterns. For specific

missions, Sections C, D, E and F offer data

upon which a quantitative tradeoff may be based.
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4. Meteorological Satellites

Satellite systems offer several advantages in

meteorological determinations. The area over

which observations can be made is, of course,

much larger for a satellite system than for a

ground station. By means of this greater cov-

erage, a complete storm structure, as evinced

by component cloud formations, may be observed

from the satellite. During daylight conditions the

satellite determinations can be photographic. The

photographs could provide information on the size,

structure and location of a storm, and series of

photographs would reveal the nature and time

history of the storm development and its motion.

When the satellite is above the night side of the

earth, observations can be made by an infrared

scanning system operating at wavelengths which

are emitted from the earth and on a spectral band

which is reflected or absorbed by clouds.

In addition to storm observations, satellite de-

terminations could include atmospheric moisture

content from radar and infrared measurements

of water vapor absorption bands, atmospheric

density, and radio noise, which indicates the lo-

cation of thunderstorms, line squalls and fronts

where the atmosphere is unstable.

The TIROS satellites, a series of experimen-

tal television-equipped meteorological satellites

launched in a NASA program, have proved very

successful. In addition to known cloud and

weather phenomena, processes which apparently

had not been previously investigated were observed.

From the standpoint of orbit design the require-

ments of the meteorological satellite mission pri-

marily involve achieving proper altitude and cov-

erage. The orbit should be high enough to permit

adequate area coverage (Section E) of high alti-
tude cloud formations and yet be low enough to

provide good resolution with available sensors
(Section F). Eccentricity should generally be low

to provide uniform coverage and resolution. The

TIROS I orbit altitude was approximately 750 kin.

Required orbit inclination is determined from the

latitude range to be covered, as considered in
Section E.

C. SOLAR PROBLEMS

For many satellite missions the following

considerations involving the relative positions of

the sun and the vehicle are important from a

mission design standpoint:

(i) Times of satellite eclipse, i.e., times
when a vehicle enters and leaves the

shadow of the earth.

(2) The duration of an eclipse, or the per-

centage of time spent in shadow.

(3) The time history of the relative positions

of the vehicle, the sun and the earth.

These factors are useful in analysis of the follow-

ing mission requirements:

(1) Compensation for radiant heat absorbed

through the vehicle skin.

(2) Provision for adequate power supply

by solar cells.

(3) Provision for tracking the sun.

(4) Assurance of optimum illumination of

the subsatellite point for photographing

certain geographical phenomena.

These various problems related to solar effects
and their effects on mission performance there-

fore merit some consideration.

1. Relative Geometry of the Vehicle, Earth and
Sun Positions

Since analyses of these solar problems de-

pend on knowledge of the positions of the vehicle,
earth and sun relative to each other, it is con-

venient to first derive equations for the instan-

taneous relative positions. These equations will

provide a basts for the individual analyses.

a. Position of the satellite in an earth

centered inertial (ECI) coordinate system

y!

X !

is

The equation of an ellipse in polar coordinates

a (1 - e 2)
r - (5)
s 1 +ecos 0

or in rectangular coordinates

(x' ca) 2 +_ y, 2

2 2
a a (1 - e 2)

--I

for coordinates in the orbit plane, x' toward

perigee. These coordinates may be transformed

to ECI by the following rotations as outlined in

Chapter XI.

= in _ cos _2 cos i -sin

0 -- sin i cos ij

Fcos_sin  --IIIx,L:c°s 01 yz,(6)
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Z

y'

x_ chicle

x__ Equatorial

plane

The direction cosines of the position of the ve-

hicle in ECI are obtained by substitution of

Eq (5) in Eq (6):

X

s = cos (0 + co) cos _2 - cos i sin (0 + co) sin
r

s

Ys
-- = cos (8 + _) sin f_ + cos i sin (O + _o) cos f}
r

s

z

S = sin (0 + _a) sin i (7)
r

s

The rectangular coordinates (Xs, Ys' Zs) are

obtained in terms of the parameter 0 by substi-

tution of Eq (5) in Eq (7).

b. Position of the sun in an ECI coordinate

system

The definition of solar position in the ECI

system is simplified by choice of vernal equinox,

¢P, the direction of the intersection line of the

ecliptic and equatorial planes, as one of the sys-

tem axes. Many astronomical tables provide
solar position in terms of right ascension, A,

and declination, D, as functions of time.

Z

?

n

x/
cp

x O =r O cos D O cos A 0

YO =r O cos D O sinA O

= r sin D OZo O
(8)

However, a more convenient system for study

purposes is one employing obliquity, i(_ , and

ecliptic angle from equinox, 0. The obliquity

i O = 23 ° 27' 08.26 'r - 0.4684" (t - 1900)

(where t is the caIendar year) _s practically con-

stant, and the solar position can then be specified

by only two variables, r_ and O . The angle _ can

be found by the inverse solution of Kepler's

equation for the eccentric anomaly as a function
of time. Then, the 9 can be found as a function

orE. However, since the orbit of the earth is

nearly circular,

e_ = 0.0167272,

r O is nearly constant (0. 983273 au <_ r O <

1.016727 au) and e can be approximated as

® = 0.98563 d m

where d_is the number of days past vernal

equinox (= March 21).

In either case, the solar position in terms ofi O
and £ is given as follows:

xO = rO cos e

yQ =r O cos i O sine (9)

zQ = r O sin i O sin

c. Position of the sun in a vehicle-centered

inertial coordinate system (VCI)

The position of the sun in the VCI system is

obtained by subtracting corresponding ECI com-

ponents of the vehicle and the sun.

X = x 0 - x s

Y = YO -Ys
(10)

Z = Z - Z
O S

where (xO , yQ , zO ) and (Xs, Ys" Zs) are given

by Eqs (7) and (8) or (9). The distance from the

vehicle to the sun is

rso = I (x O - Xs)2 + (Yo - ys)2 + (zo - Zs)2

(11)

and so Eq (10) may be expressed in direction
cosine form as follows:

X - X

_ O S
cos o X r

so

cos 3y

cos _Z

=Yo -Ys

rs 0

Z - Z
_ 0 S

r

so

(12)
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d. Positionofthesunin avehicle-centered
localhorizontalcoordinatesystem(VCL)

ECIcoordinatesmaybetransformedto VCL
bysuccessivecounterclockwiserotationsabout
z through_2,aboutx throughi and about z through
(e+_).

Z

tie
I Perigee

IilI il= -sin (8+ ¢0) cos (0 +_o)

0 0

• cos i sin i sin _ cos f2

-sin i cos i_J 0

os ncos (e+_)

sin _1 cos i sin (e +_.)

COS _l sin (e+_)

sin _ cos i cos (8+_)

in _ sin i

sin _ cos (O+_)

+cos G cos i sin (8+_)

-sin nsln (O+_)

+cos _co8 i cos {8+w)

- Cos 12 sin t

sin i cos (O+_) 1

cos I

(]3)

Substitution of Eq (9) in Eq (13), followed by trans-

lation of the vehicle radius r in the _ direction,
S

gives the direction cosines of the solar position
in VCL coordinates:

= - os 8 os f_ cos (e +co)
cos e_ rso sOL

- sin 12 cos i sin ( 9 + ¢o)_

+ sin ® cos if) [sin _ cos (0 + co)

+ cos _ cos i sin (8 +_,)]

+ sin9 sin if) [sin i sin (0+c01}

r
s

r

so

cos /3
- _O - rf) (cos <_I_ cos_stn(O+._ )q rsf ) rs 0

- sin _ cos i cos (8 +w_

+sin ecos i0 I- sini] sin (8 +_)

+cos i]cos i cos (9 +w 1

+ sin G sin if) sin i cos (e +WIl4)

cos "y_ -
_f) _ rQ roos

rsf) rsf) L- sine sin i

- sin _coS if) cos _2 sin i
-'-i

+ sin _ sin i O cos il
J

The last equation of Eq (14) is especially interest-

tng since the true anomaly 0 is not involved, i.e.,

cos V_ is a function only of the time of year (O)

and the orbit orientation (f_and i). In fact, for

low altitude orbits r O _rso and V£ approaches

the angle between the earth-sun line and the

normal to the orbit plane.

cos "_n= cos _ sin _ sin i

- sin ® cos if)cos f_ sin l

+ sin ® sin iO cos i (15)

This is a useful parameter in determining time

in sunlight (Section E). The sin "_n and cos Yn

are plotted in Figs. i and 2 (Ref. i) for a

particular orbit to show the form.

2. Eclipses of Earth Satellites

There are several important areas to be

considered in the study of eclipsing of earth

satellites by the earthls shadow. The areas

discussed in this section include the following.

(1) General geometry of eclipses by the
shadow.

(2) Equations leading to the prediction of

eclipses by the shadow.
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(3) Generalgeometryof eclipsesbythe
penumbra.

(4) Equationsleadingto thepredictionof
eclipsesbythepenumbra.

(5) Eclipseinformationobtainedby
analyticalmeans.

(6) Complicationsinvolvedin theproblem.

(7) Chart and equations for a computer

program.

In the material to be presented, all angular or-

bital elements are referred to the plane of the

ecliptic. Since these angles are referred to the
plane of the equator for earth satellites, the

reader should see Chapter XI for the appropriate
coordinate transformation.

a. General geometry of eclipses by the
shadow (Ref. 2)

For simplicity, Figs. 3 through 5 show the

orbit of the satellite through the center of the

shadow. Figure 5 shows a case where the

shadow is not at the node. In all three figures,

P1 is the point where the satellite enters the

shadow and P2 the point where it leaves the

shadow. P3 is some point outside the shadow

(that is, in sunlight). Let s be the size (angular

radius) of the shadow and 0 the angular dis-
S

tance from the center of the shadow to any point
in the orbit. When @ > s the satellite is in sun-

s

light; when 0 (s the satellite is in shadow.
s

b. Equations involved in prediction of

eclipses by the shadow (Ref. 2)

The angular size of the earth' s shadow is

computed from

s = TOTY sin-

where R is the earth,s radius

and

a (l-e) 2

l+e cos 0

i/a = semimajor axis

'<e = eccentricity
0 true anomaly

and the factor 102/100 is due to the refraction

of the atmosphere. Now, using the following
sketch

cos 0 --cos AX cos A8
s

+ sin AX sin A0 cos i e

where

(17)

Ak --g2 - k (shadow)

A0 = 0 - 0 (_)

and

0 (_)

X (shadow) = longitude of the shadow

= longitude of the sun + 180 °

= true anomaly at the node

---- -ka

i = inclination of orbit plane to
ecliptic plane

/ Orbit

_ plane

[ _ /"k /_ Ecliptic

plane

plan(

The solution of the equations for s = 0 will
s

give values 0 1 and 02, the true anomaly at the

point of entering the shadow (P1) and at the point

of leaving the shadow (P2) respeetively. For

each of those conditions

cos 0 + e

cos E = I + e cos @ (18)

M = E- e sin E (19)

If 0 < 0 < 180 or If 180 < 0 < 360

then 0 < E < 180 then 180 < E < 360

and 0 < M < 180 and 180 < M < 36(1

and t = M n (20)
a

where

e = eccentricity

E = eccentric anomaly

M = mean anomaly

t = time from perigee passage (tp)

n = mean motion

then

; GM0 the product of the universal

gravity constant and the mass of the
earth

= 1.407648 x 1016 ft3/sec 2 (adopted

value)

= 398,601.5 kma/sec 2

Time in umbra = t2u tlu (21)
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If Eq(21)is negative,addtheorbitalperiodto
theanswer.

Todetermineeclipsedurationonanylater
revolution,it is necessaryto updatethepast
valuesoftheorbitalelementswhichhavebeen
changedasa resultof variousperturbations
(seeChapterIV), andthepositionof theshadow
(approximately0.9856deg/day).Theequations
for s and0 areagainsolvedfor thepointswhere

S

S =0 s .

c. General geometry of eclipses by the

penumbra (Ref. 2)

To find time in penumbra, an approach is

followed similar to the study for the time in
umbra or shadow. Inthis case, however, the

penumbra is a ring around the umbra as shown

in Figs. 6 and 7.

From Fig. 6, it can be seen that, if the sat-

ellite orbit is circular (i.e., r 1 = r2),

But

AT 10P 1 _ AT20P 2

• _T 10P 1 =_T 20P 2

T 10T 2 = 180° -/O l OT 1 - /T20 0 2

_-180o_ (90o-,_)- (90o-#)

= a+fl

and

= /T 10T 2 +_:T 20P 2 -/T 10P 1

= JT1OT 2 - a+/3.

Thus the angle _ is very nearly constant regard-

less of the size of the circular orbit and is ap-

proximately equal to 0.54 °.

d. Equations involved in prediction of

eclipses by the penumbra (Ref. 2)

Whether a satellite enters the penumbra or

not (in a particular revolution about the earth)

is a similar problem to that of finding out whether
it enters the umbra (shadow) or not. We simply

increase s by _ and then compare 0 s with s + 4.

The satellite enters and leaves the penumbra

cone at the points 0 -- s + qJ. For these points
S

use Eqs (18), (19) and (20) obtaining tlp and t2p,
o

relative time of entering penumbra and time out

of penumbra. If there is not an umbra eclipse in

that revolution, then

Time in penumbra -- t2p - tlp (22)

If there is an umbra eclipse in that revolution,

then there will be two times in penumbra (first

going from point P1 to point P2 and then going

from point P3 to point P4 as shown in Fig. 7,

name ly,

Time in penumbra (1) --flu - tlp (23)

Time in penumbra (2) --t2p - t2u (24)

If any of Eqs (22), (23) and (24) is negative, add

the orbital period to the answer.

e. Alternative solution for eclipse times

An alternative solution for eclipse times may

be formulated from consideration of Fig. 9. Let

(_0 Y, _) be unit vectors in an ecliptic coordinate

system (x c0 Yc' zc )"

Rq) = radius of the sun

R_ = radius of the earth

= geocentric radius vector to the sat-

ellite (unit vector _)

r = distance between the centers of
• earth and sun

= unit vector along the direction of
the earth-sun line

X = geocentric celestial longitude of
the vehicle (ecliptic)

= geocentric celestial latitude of the

vehicle (ecliptic)

heliocentric celestial longitude of

the earth (ecliptic)

angle between _ and s

Then

and

= cos g cos X_+cos l sin X_+sin_ _

= -cos _e _ - sin _'e

cos ¢ -- ? •

The condition for entering or leaving the penumbra
is that ( = 0 (c defined in Fig. 8). This condition

can be determined from

-I R_
( -- a- _+_-Q - sin

r

where

- 1 RO
= sin

2 r 2lr e + -2r e reos

2

_ %% .

+ 3©2-_ cos 2

">_> $ 1 >>
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and

-1 r sin4_
13 = sin

I 2 r 2re + - 2r_9 reos¢

re

sin2* rer 2 + r.____ cos ¢

3 r 2 _
(_) cos -9

The solutions for penumbra entrance and exit thus

satisfy

-- 1 + r cos_ - r sin

re re

+ _-@ -sin
-I R(9 _

-- -- 0
r

RQ J 1 _>'_

The umbra entrance and exit conditions can be

written by taking

_ ; _r -* - (a - B) - sin-1 Rtt_
r

whe re

__ + r_r_ COS (P + r._r sin

re re re

(as indicated by Fig. 8) and where a is taken in

the opposite direction to that for the penumbra
solution, i.e., a is the angle between the vehicle-

sun line and the lower tangent to the solar sur-
face.

No correction for refraction of the light
waves has been made in this material. However,

it is noted that the apparent effect at the vehicle

will be to make the sun appear larger. Thus,
an accurate correction can be made by utilizing

the apparent rather than the true radius of the

slln.

f. Eclipse information obtained by analytical
means (Refs. 1, 2 and 3)

An exact closed-form analysis of general

satellite eclipses is impracticable; however,

some useful information can be obtained by this

type of analysis. Very little can be done with an

eccentric orbit, as may be inferred from the

previous sections, but with unperturbed circular
orbits several important eclipse properties may
be determined.

(I) Eclipse season

If it is desired to find the days on which an

eclipse occurs, or so-called eclipse season, one

may do so with the aid of Fig. 9

= sin s (25)
sin _u sin l--'---_

where s would be the maximum size of the shadow

for an eccentric orbit.

Then

(umbra_ _ 2 )Xu
eclipse season \only / _ days (26)

where 0. 986 is the mean velocity of the sun in

degrees per day.

The exact eclipse season is difficult to com-

pute analytically: (1) due to the regression of the

nodes the inclination with respect to the ecliptic

varies and it is difficult to predict the inclination
when the earth's shadow is near the node; (2) if

the orhit is very eccentric the size of the shadow

at perigee would be much larger than that at apo-

gee, and again it would be necessary to predict

the position of perigee at the time the shadow is

approaching the node. For many applications,
however, the simple method presented above is

adequate.

To determine the eclipse season including the

penumbra, the above equations may be used but

s must be increased by q_(_ =0%54), as shown

in the following sketch.

/umbra and_ = 2 )_up
eclipse season \penumbra/

sin-1 [sin (s + ¢)_
sln I E _J

= 2 (27)
0. 98563

PLANE

ECLIPT_C

PLANE

Obviously, if the inclination with respect to
the ecliptic is smaller than the angular radius

of the shadow (i < s), there will be an eclipse

at every revolution.

Also it must be remembered that due to ob-

lateness (and also luni-solar perturbations in

certain cases) the nodes regress, and a more

realistic expression for Eq (26) would be

%u

eclipse season = 2 di2" (28)

0. 98563 +

where dl2/dt =rate of regression of the nodes

with respect to the ecliptic. It should be noted

that, with proper selection of orbit inclination

and altitude, the regression rate can be made
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d_£%= o. 986o/
equal to the earth revolution rate, dt

day (i.e., the orbit would follow the sun). In par-
ticular, if the initial orbit were chosen to have

this regression rate and, furthermore, to be

continuously in sunlight with

Ii_ > cos- I l -

the satellite would be in sunlight for its entire

dfl = l°[day islifetime. The orbit condition for

7/2

cos [ _ - 0. 1(-_-)

i. e. 0 90<i< 180 °.

No straightforward analytical expression exists

to give the rate of regression of the nodes with

respect to the ecliptic similar to the expression

(to first order) which gives the rate of regression

of the nodes with respect to the equator. The

reason for this fact is shown in the following sketch.

u.ifo.mly ! 1/ E?ti.tio
• ,,J V" pin ne

regresslng vl A

orbital _f_'/

plane _2;_JA /_r--True orbit

o_>_/I f (w_thpel-iodio
 orm >

_:J t plane

Thus, the equatorial nodal position and the periodic

perturbutions of the node must both be considered

in the definition of nodal position relative to the

ecliptic. A graphic study shows, however, that

the regression of the nodes with respect to the

ecliptic is negligible in most cases. In cases for

which it is not, ic < s and, therefore, is of no con-

sequence in the computation of the eclipse season,

since for it < s there is an eclipse in every

revolution.

(2) Maximum time in umbra (eccentric orbits)

To get an idea of the maximum time in the

umbra the following method may be used.

Let the size of the shadow at apogee be s
a

and the angular velocity at apogee, w a

where

Va I
Wa ra a 3 (1 + e) 3 (1 - e)

--l (4v a P -

r
a

= a(1 +e)

then

maximum durationofeclipse = 2 (_-_a)

where s is given by Eq (16).
a

(3) Curves of maximum eclipse duration and

eclipse season (circular orbits)

In the case of unperturbed circular orbits a

simplified approach is possible. A set of general

curves is included for circular orbits, clearly,
the results obtained from these curves cannot be

extended to eccentric orbits. A simple method

of computing and presenting maximum eclipse

durations and eclipse seasons is given in the

following material.

Figure 10 shows maximum time in umbra
versus semimajor axis, which is obtained from

maximum time in umbra = 2 s (29)
n

where n is the mean motion

n --
a

(30)

Maximum time in umbra and penumbra versus

semimajor axis is obtained simply from

maximum time in umbra

and penumbra = 2 s + _ (31)
n

Figure 11 shows the same information as Fig. 10,

but with expanded scale.

Maximum time in penumbra where there is no

umbra eclipse is computed from

cos 60 _ cos (s + _) (32)
COS S

which is obtained from the following sketch.

5O
Then, maximum time in penumbra = 2 -- .

n

Figure 12 shows maximum time in penumbra

versus semimajor axis. Figure 13 shows the

same information as Fig. 12, but with expanded
scaie.

Figure 14 shows eclipse season (umbra only)

versus semimajor axis and inclination, which is
obtained as illustrated in Fig. 9. Figure 15 shows

eclipse season (umbra and penumbra) versus

semimajor axis and inclination obtained as illus-

trated in Fig. 9.

Figure 10 showed that, for fairly low altitude

orbits (less than one earth radius), the times

in umbra and penumbra differ by a fraction of a

minute or less than 1% of the orbit period. In

this region the earth shadow can be accurately

approximated by a eyIinder. With this assump-

tion the eclipse duration solution for unperturbed

circular orbits can be further simplified. The

simplified problem has been considered in various

references, e.g., Refs. 1, 3 and 4.
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If theshadowmadebytheearthis approximated
bya cylinder,thiscylinderwill intersecttheorbit
planeinanellipsewithsemimajoraxisof

COS "gn
and semiminor axis of R, as shown in Fig. 16,

where cos "_n is given in Eq (15) and plotted in

Fig. 2. The per" cent time in sunlight is then the

same as the per cent of the orbit arc not contained

in the shadow ellipse, as shown in Fig. 16. The

problem then reduces to the simple determination

of the angle _ from the intersection of the orbit

and the projected shadow ellipse:

= r S

2

R 2 + y = 1 (shadow ellipse)

Substitution of y from the first equation in the

second equation gives

or

Then

2 2 r 2 x 2 R 2
x cos Y n + - =

' R2"
- rs -

x - _----

sm "_
n

cos ¢ = x = OO <¢ <90 °
r sin ¥ '

S n

The per cent time in sunlight is

ts = W x 100% for sin 2n°> 1 -

- 100% for sin 7n <_ i _/(__}2

Substitution for _ in this equation gives

sinNn =±

COS (I. 8 ts)

(33)

This equation determines the orbit orientation

Yn required for any desired per cent sunlight time

t . Equation (15) in turn provides the combina-
s

tions of time of year, orbit ascending node and

orbit inclination possible for a given t .
S

As examples, circular orbits of various alti-
tudes and inclinations were considered. The

value of cos _ for various orbit altitudes as a
n

function of per cent sunlight time is plotted in

Fig. 17. Another presentation of the same rela-

tionship is given in Fig. 18. These values are

obtained from Eq (33). Then horizontal lines

across Fig. 1 or Fig. 2 at each t level determine
S

the (@, f_) loci for the given per cent time in sun-

Iight. These loci have been replotted in different

form in Figs. 19 through 23. These figures show

very clearly the required longitude of ascending

node, _, required to provide a given sunlight time

t s a* any given time of the year. For example,

for 125-naut mi (232 kin) orbits, 100% sunlight

may be achieved only in alternate quarters of the
year, the quarters near autumnal and vernal

equinoxes. During quarters centered about the

summer and winter solstices, the maximum time

in sunlight is 80%. For 500-naut mi (930 kin)

orbits, 100% sunlight may be obtained at any time
in the year.

Other curves which may prove to be useful
are:

(1) Inclination with respeet to the ecliptic

(i) versus longitude of the node with

respect to equator (_2) for different

inclinations with respect to equator
(i) (Fig. 24), computed from

cos i = cos 23.4 cos [
E

+ sin 23.4 sin i cos f2 (34)

which is obtained from the following
sketch.

ORBIT
PLANE

ECLtPTIC
i, PLANE

i EQUATOR

(2) Angular radius of shadow versus distance

from center of earth, Fig. 25 [see Fig.
3 and Eq (16)_. Figure 26 shows the

same informgtion as Fig. 25, but with
expanded scale.

g. Chart and equations for a computer program

The following reasons indicate why a closed-

form analytical solution is not easily obtained:

(1) Time of launch--the longitude of the
node at burnout will vary with the time
of launch.

(2) Date of launch--the initial position of
the sun will be different for different

dates of launch.

(3) Eccentricity of orbit--the shadow is not

a eircle, but has an egg-shaped contour.

(4) Regression of the nodes--the longitude

of the node will vary constantly due to
oblateness.
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(5) Advanceof perigee--theargumentof
perigeewill varyconstantlydueto
oblateness_thesizeof theshadowat
thenodeswill vary frommaximumif
perigeeis atthenodeto minimumif
apogeeis at thenode.

(6) Drag--thesizeof thesemimajoraxis
of theorbitwill decreasedueto atmos-
phericdrag.

(7) Luni-solarperturbations--allofthe
orbitalelementswill vary to some
extentdueto luni-solarperturbations.

A methodfor obtainingamoreprecisesolu-
tionto thegeneralproblemof earth'ssatellite
eclipsesis givenin this section.

Themostefficientmethodof calculatingeclipses
is bymeansof acomputerprogram,a simple
exampleof whichis representedin Fig. 27, from
Ref. 2.

It mustbenotedat thispointthatthis program,
aswellasanyof theanalyticalmethodsdescribed,
will produceonlytimesin umbraandtimesin
penumbraat agivenrevolution,butnotthetime
of dayat whichthesephenomenahappen.Thiscan
beroughlydeterminedbyknowingthetimefrom
perigeepassageat whichthephenomenaoccur,
theperiod,andthetimeof perigeepassagefor
somedate. If thetimeof perigeepassagefor date
D1is T1andtheperiodis T, thentheapproximate
timeofperigeepassagefor someotherdateD2,
AD days from D1, is

T 2 -- T 1 + N7 (35)

where N is the integral number of periods in AD.

If the motion of perigee due to perturbations is

large, the anomalistic period (time from perigee

to perigee) should be used in Eq (35).

The results of machine computations are shown

in Figs. 28 through 30. The luni-solar perturba-

tions were added by first running another program

which computes changes in equatorial elements

due to various perturbations (a complicated pro-

gram in itself), and then using the output as the

input to the eclipse program. Also included in

the above set of curves is one showing the eclipse

pattern when launching the same vehicle at dif-

ferent times of day on the same date and at the

same time of day on different dates.

D. GROUND TRACKS (REF. 3)

The equations for the ground track of a satel-

lite orbit may be written, from an application of

spherical trigonometry to Fig. 31, as follows:

Geocentric latitude:

L = sin-i (sin i sin _) (36)

Geocentric longitude:

A = tan -I (c(_s i tan ¢>)+ An0

2

- m e At - _ Kn J2 &t e2)2(i-

(37)

where

¢

An0

= inclination of the orbit plane to the

ecliptic plane, 0 < i < 180 °, measured

+ from east at as_ena_ng node

= orbit central angle between the satel-

lite and the ascending node

= initial geocentric longitude of the as-

cending node, 0 <_ An0 <_ 360 ° , meas-

ured + toward the east

fl = rotation rate of the earth, 4.178074
e

x 10 -3 deg/sec

An0 = initial geocentric longitude of the as-
cending node

At = time measured from the initial con-

dition

K : 57. 2958 deg/rad

n = mean motion =

-3

J2 = 1.0823 x 10

R e = equatorial radius of the earth

a = orbit semimajor axis

e = orbit eccentricity.

Equations (36) and (37), presenting satellite

position with respect to a rotating oblate earth,

neglect second order oblateness perturbations.

These equations may be used to generate the

ground track as a series of points (L, A) as a

function of the parameter 4. This determination

is simple in the case of circular orbits, but
somewhat complicated for elliptical orbits due

to the nonlinear behavior of the angular rate.

1. Elliptical Orbit Ground Tracks

The difficulties of ground track predictions

for elliptical orbits arise from the fact that the

angle in orbit plane (from ascending node to
satellite) is a nonlinear function of time. For

large eccentricities, Chapter HI expresses this

angle in the form of a Fourier-Bessel infinite

series. For small eccentricities, the angle can

be expressed as a simple sine series where the

constants are determined by the corresponding
eccentricities.
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Satellitelatitudeandlongitudearefirst es-
tablishedwithrespectto a nonrotatingearth,as
afunctionof time. Rotationof theearth, regres-
sionof thenodesandprecessionoftheperigee
arethenusedascorrectionsfor longitudeand
latitudeona rotatingearth. Six inputparameters
areneeded(e.g., h0,v0, _0' L0' A0and/30).
Fromthesedataall thenecessaryinforrnationis
obtainedbytheequationsof sphericaltrigonome-
try andplanetarymotionalongtheKeplerian
ellipses.

Thegeometricalrepresentationof theprob-
lem, indicatingthemostimportantquantities
usedin thecalculationprocedure,is givenin
Fig. 31. It shouldbenotedthatthe longitudeof
theascendingnode(_), aswellastheangleof
perigee(w)andtheangleofthesatellite(_)from
thenodeareall functionsof time.

Thepropertiesof theKeplerianellipseare
asfollows:

Semimajoraxis:

r0
a v2/_ (38)2- r0

Eccentricity:

I 2 2 2
r O v 0 cos )10

e = 1 - ap (39)

Period:

T = 2_ i a3/_ (40)

Next the central angle from perigee is derived.

First, the local flight path angle is seen from the

following geometry to be

tan y = r _ 1 dr r/X
r0 r_-O /

P
r l+ecosO

Therefore,

e sin 0
dr _ pe sin @ . and tan y = 1 + e cos e

(i + e cos 0) 2

This is expressed as

e I 1 - cos 2 O

tan y = 1 + e cos @

and the following is derived.

e cos @ = sin 2 I e 2 2y i cos y - sin

From this, the initial central angle from perigee
is obtained.

Isin2 I 2 2 ]O0 = ±cos-i . Y0 ± cos Y0 e - sin Y0
e

(41)

Equation (41) gives four possible answers and the

correct one should be selected as follows:

Flight Path

Angle Radius 00 (from perigee)

y0 > 0 r0< a 0° < O0< 0*

Y0 > 0 r 0 > a 0* < O0 < 180 °

Y0 < 0 r 0 > a 180 ° < 00 < 360 ° - 0"

YO < 0 r 0 < a 360 ° - 0"< 0 O< 360 °

where O*--- 180 ° - cos -1 e (see Fig. 31)

Now the inclination of the orbit is obtained by
spherical trigonometry.

-1
i = cos (cos L 0 sin /30i ),

(42)

(43)

where /30i is obtained as follows.

R

= e e cos L 0 cos /30
/301 /30 + v 0 cos _'0

The component of velocity parallel to the

earth's surface is found by v _ = v 0 cos Y0" The

component due to the earth's rotation is simply

v e = R f_e cos L 0.

From trigonometry,

V
e v _

sin_ = sin (90 ° + /301

V _

- COS _0 •

I Ve

Because ,x/3 is a small angle, sin A/3 = A/3 is a

good approximation. Finally, since

v Rf_

e = e cos L 0 cos /30" (44)
A/3 : v-v-r cos/30 v 0 cos 70

Now

/30I : /30 + a/3. (45)

The initial angle from the ascending node is

<_0 = sin-1 _J (46)

and the initial perigee angle from the node (Eqs
(41) and (46)) is

WO : 90 - O0" (47)
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Denotingthetimefromtheinitial point(L0, A0,
h0)byAt. Then,

t = t 0+ At. (48)

where t o is the time from perigee found from

Kepler' s equation

_1 -e 2

- e sin 00
_r + 2 tan-1

to = _-_ i + e cos O0

[_ _ • (49)

For a nonrotating earth, the following equa-

tions are derived from spherical trigonometry.

-1

Latitude: L I = sin (sin i sin ¢) (50)

Longitude: A I = tan -1 (cos i tan ¢)) + A h (51)

Next, consider a rotating earth with oblateness ef-

fects. Due to the precession of the apsides, the
perigee of the orbit is a function of time, and the

angle of perigee from the ascending node is given

by

• At
u = ¢00+ Kw --_--

= w0+_ K_J2At "_x___e) 2
(2  sin2i)

(1 - e2) 2

where

n =- -- =
T

(52)

(53)

For an easterly launch, the node is given for a to-

rating oblate earth as

T

2

(_._) cos i= f_0 - [_e At - KnJ At
(i - e2) 2

(54)

where _0 = An0 + Greenwich Sidereal Time

_cos _0_

= A 0 - cos -1 \_/+ GST
(55)

(Longitudinal shift of the ground track is plotted

in Fig. 30.) Now, the angle from node can be

found from a Fourier-Bessel series expansion
as a function of time.

5 2
¢ = u+ nt+ 2e sinnt+_e sin 2 nt+

(56)

Expressing Eq (56) in terms of t o and using Eq
(52),

= dO0 + nat 1 + gKJ 2 (1 - e2) 2

5 e 2 (sin 2 nt
+ 2e (sin nt - sin nt 0) +

sin 2 nt 0) + .... (57)

For a few revolutions, Eq (57) can be approxima-

ted by

¢ : _0 + nat + 2e (sin nt - sin nt0). (58)

Finally, the desired relations for satellite posi-

tion with respect to a rotating oblate earth are

given by Eqs (36) and (37). Also, the orbit radius

can be expressed in series form as

r = a E ¢ t1 - e cos nt - (cos 2 nt - 1) - . . .

(59)

If extreme accuracies are needed, it should be

remembered that _ and _0 in Eqs (52) and (54)

can be considered as simple constants only for

integral numbers of revolutions. For some frac-

tion of a revolution, the rates of regression of
the nodes and precession of the upsides are ac-

tually periodic functions, which contain sines or

cosines of the geocentric latitude, These func-
tions result in an oscillation about the mean

values given by _ and w utilized here. The more

accurate perturbation models are described in

greater detail in Chapter IV.

2. Synchronous Orbits

As noted previously, because synchronous or-

bits yield ground tracks which repeat daily, they

have special advantages for certain missions,

e.g., navigation and communication, and, there-

fore, merit special consideration• The periods

and altitudes of the synchronous orbits are given

in Table 2. This table is based on the following
equation.

7sidereal = 27r a _- - 3J 2

Of particular interest, because of limited

ground track excursion, is the 24-hr satellite.

The circular equatorial 24-hr satellite does not

move relative to the rotating earth, and so its

ground track is simply a point on the equator.
Circular 24-hr orbits of nonzero inclination ex-

hibit limited excursions. The ground tracks for

these orbits, shown for i = 40 ° , 50 ° and 60 ° in

Fig. 32, have the shape of a figure eight. El-

liptical inclined 24-hr orbits have ground tracks

resembling skewed figure eights. Examples of

these are shown in Figs. 33 and 34.
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TABLE 2

Synchronous Orbits

Tsidereal _sideral iSernimajor Axi_

hr) (sol see) [ a (ft x 108)(Sid

24 8B. 154.0!! [ 1.3_3408

12 43,_g2.05 I O.g7155B

8 28.721.36[ 0.665182

6 21,541.02 I 0.549151

4 14.360.68 [ 0.419175

3 10,770.511 0.346109

2 7.180.34 [ 0.264281

Circular Orbit

Altitude

Semimajor Axis (R e = 6378.15 km

a (kin} h (kin)

42,166.28

26,5£5.0B

20,274.76

16,738.13

12,776.46

10,549.40

8,055.28

35,788.13

20,186.93

13,896.61

I(3,359.98

6,398.31

4,1ql.25

1,677.13

E. SATELLITE COVERAGE

Coverage concerns the ability of a satellite-

borne observer or sensor to view a point or area

on the surface of the earth or, from the opposite

standpoint, the ability of a satellite to be viewed

from a point or area on the earth. As noted in

Section B, most types of satellite missions, in-
cluding reconnaissance, communications and

navigation missions, impose certain coverage

requirements. This section considers the de-

gree of coverage available with a given orbit or

pattern of orbits. Because of the basic differ-

ences in area coverage and point coverage, these

topics will be considered separately.

1. Area Coverage

Area coverage, as distinguished from point

coverage, will be taken to imply interest in a

wide area, e.g., the entire globe, a certain range

of latitudes, a continent, etc0 Point coverage in-

volves coverage of specific areas of limited ex-

tent, such as specified landing sites, tracking

stations, small reconnaissance targets, etc.

a. Coverage by a single satellite

The total area on the earth's surface theore-

tically visible from a satellite at a given instant is

given by the following expression:

d = Ra = R cos -1 (RR+_

where

R = earthsts radius (6371.02 kin)

(60)

a = central angle between the subsatellite

point and the outer edge of area visible
from the satellite

h = altitude of the satellite (in km)

If the angle of incidence is restricted to be

larger than a given minimum viewing angle a,

then the coverage arc length can be expressed by

the following equation (see sketch).

\R + h I - (61)

This equation is plotted in Figs. 35 and 36. The

coverage angle, _, in degrees can be found from

the corresponding arc length by the conversion

= 0. 0089929d (deg)

where d is in kilometers. This conversion is

based on the radius of a sphere of volume equiva-

lent to that of the earth. The percent of earth's
surface area visible from the satellite can be

found immediately from the coverage angle, c_, by

comparing the area of the visible segment with the
total area of the globe.

Area of segment

A = 2_rR 2 (1 - cos _)
S

Total area

A t = 4r R 2

Percent area visible

As [1 - cosa]
A% = _ x 100% = 2 x 100%

If range, in addition to viewing angle, is a sen-

sor limitation, the dashed lines on Fig. 35 (the

loci of maximum range) together with the maxi-

mum viewing angle loci determine permissible

regions of coverage half-angle and altitude.

R sin
P - cos (_ + (_) (62)

It is frequently necessary to relate the cover-

age information of Eq (61) and Figs. 35 and 36

to geocentric longitude and latitude on the earth's
surface. If at a certain time the subsatellite

point is located at geocentric longitude A 0 and

geocentric latitude L 0, the circular perimeter

of the spherical segment of half-angle _ (the area

in view of the satellite) may be determined as
follows. In the following sketch, let (L, A) de-

note a point of the perimeter to be determined.
If

2_A-=A-A 0
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andAA* is measured on a great circle, the law ],-AA*
of sines of spherical trigonometry gives

• . . sin A A* _ / //sm _A = _ (63)

_Z/7 /00o\
which, a ;ter su

fication, yields

quator

or

(L, A)

From the following sketch, also by the law of
sines,

sin AA* = sin ]3 sin a

os A A*J.J

which, after substitution into Eq (64) and simpli-

sin L = sin L 0 cos a + cos L 0 sin _ cos _ (68)

0 A Equations (65) and (68) then comprise a solution

for the perimeter of the instantaneous coverage

area in terms of the parameter ]3, the coverage

half-angle _, and the geocentric longitude and

latitude of the subsatellite point (k00 L0).

(64) Equations (65) and (68) may also be used to

define the areas on earth which are not visible

from a given ring by making the following sub-

stitutions:
where _ is an arbitrary azimuth angle (the param-

eter of the perimeter solution) and _ is the cover-
age half-angle defined in Eq (60). Equations (63)

and (64) give

sin c_ sin ]3 (65)
sin _A - cos L

Also from spherical trigonometry

CO8 y# = COS
cos A A*

Now, differentiating Eq (65) with respect to
]3 and equating the result to zero yields the maxi-

mum longitudinal increment of an area which is

uncovered by a particular ground swath. This
derivative is

cos AA _ = 1 iccos2_L os _ sin _ cos L

Since

_* = 90 = - L 0 - L*, d- sinfi sina_ (cos L
(69)

cos _
90 ° - L* = L0 + c°s-1 \cos AA*) " (66)

Using Eq (68) and the trigonometric identity

2
cos L = 1 - sin2L

But, from the preceding sketch

cos L* : cos (90 ° - L)
co S /%A*

or

sin (90 ° - L*) = sin L
cos A A*

(67)

it follows that

2 cos L d_ (cos L) = 2 sin L (cos L 0 sin _ sin [3)

or

d
(cos L) = tan L cos L 0 sina sin ]3 (70)

XIII-18



FromEqs(69)and(70),

d(zXA)_ cos/3sina cos L - sin 2 /3 sin 2 a cos L 0 tan L

_r cos 2_A cos 2 L

(71)

If

-0,

it is implied that

cos _ sine cos L - sin 2 /3 sin 2 u cos L 0 tan L = 0

(72)

Squaring Eq (68) and substituting into Eq (72) yields

(sin L 0 cos L 0 sin a cos 0t) cos 2 /3 - (1

2 2 2 2
- sin L 0 cos _ - sin _ cos L 0) cos /3

+ sin L 0 cos L 0 sina cos _ = 0 (73)

Equation (73) can be simplified, yielding

2 F cot oe tantan L___
cos /3 - 2 |sin-Fd-gLo _ cos/3+ i = 0

(74)

Defining

cot a tan L 0

K = _ L0 tan _ (75)

the azimuth for maximum longitude deviation,

AA is given by
max

cos /3&.h_ K - IK 2 - 1 (76)
max

Taking the limit in Eq (75) as L 0 -_0, K -_

and lim (cos _/x A ) = 0. Thus, the

L0--0 max

time that the azimuth angle /3AA (which
max

locates the maximum value of AA) equals 90 °

corresponds to the center of the area uncovered

by the ground swath on the equator. The angle

_LXA is less than 90 ° for northern latitudes
max

and greater than 90 ° for southern latitudes.

The previous analyses concern the instantane-

ous coverage available from a satellite. Since

the satellite is moving relative to the earth's sur-

face, the spherical segment of covered area also

moves along the surface, thus generating a track

(the "ground swath") of area covered at some

time during the lifetime of the satellite.

The edges of the ground swath of a single satel-

lite may be determined from the area coverage

perimeter solutions previously obtained and the

ground track equations developed in Section D.

The problem is illustrated in the following sketch.

S

Ground "

swath

Ground
track

N

AA

oR

L 2

L 0

L 1

Again, let the position of the subsatellite point

in geocentric coordinates at a certain time be

(L 0, A0). The locus of points on the perimeter

of the area covered when the satellite is located

at this position is given by Eqs (65) and (68). Two
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of thesepointswill alsobepointsontheground
swathedgesto bedetermined.Namely,thetwo
pointsarethoseattheintersectionsof thecircu-
lar perimeterandthemajorcircle through(L0,
A0)andperpendicularto thegroundtrack. Thus,
thetwointersectionpointsmaybedeterminedby
solvingEqs(65)and(68}for twoparticularvalues
of /3.

= /30 ± 90 °

where /30 is the orbit azimuth angle relative to

the rotating earth defined in the previous ground

track analysis, SectionD, Eqs (44) and (45).

That is, the solution of

sin L = sin L 0 cos a :_ cos L 0 sina sin _0

(77)

sin a cos /30

sin zIA = ± cos L (78)

provides two points on the ground swath edges.
Then the complete ground swath outline may be

generated by solution of Eqs (77) and (78) for sets

of values (L 0, A 0, _0 ) generated from the ground

track solutions, Eqs (36), (37), (44)and (45).

For low altitude orbits, ground swath outlines can

usually be calculated to adequate accuracies with-

out correcting the orbit azimuth angle in inertial

space, 130I, for rotation of the earth. Of course,

rotation must be included in the ground track

equations used to generate the set of base points

(Ao, LO).

In determination of the long term coverage

available from a given satellite, the longitudinal

shift of the ground swath, as computed from Eqs

(77) and (78), is of interest. At each latitude, the

longitude of the ground track (and hence the longi-

tudes of the ground swath outlines) shifts an amount

AA 7 = _e "modal (79)

where

f_
e

= rotation rate of the earth

= 4. 178074 x 10 -3 deg/see

7noda 1 = nodal period of the satellite orbit.

For circular orbits,

7nodal = ,[1- _- J2(r_") 2 7 cos 2 i - i 1
4

1 >> J3 (80)

where

7 = Keplerian orbit period = 27rr 0 t_

r 0 = circular orbit radius

Equation (79) is plotted for the case of circular
orbits in Fig. 37. The longitudinal shift may be

obtained to five place accuracy by multiplying

nodal
-- from Fig. 38 by _" from Table 1 of Chapter

Ill and multiplying this result by f_e"

The previous analyses, and those of Section D,

are concerned with the determination of the ground

track and ground swath for a given set of orbit

elements and sensor limitations. From the op-

posite point of view, the equations of these secti£ns
can be used to select orbit elements and sensor

requirements to achieve total or optimum coverage

in a certain area. The typical pattern of area

covered by two consecutive ground swaths is shown

in the following sketch. During any given day every

point in the latitude region of total coverage is in

view of the satellite at some time. This region can
be determined from the previously derived ground

track and ground swath equations by solving for
the intersection points of two consecutive swath

outlines. However, if mission requirements per-
mit coverage of each point in a latitude band once

in several days, the total coverage area may be
increased. That is, if the orbit altitude and in-

clination are selected so that the longitudinal shift

AA = m &A (h, i) (81)

(where m = number of orbit periods in one day, AA
T

is given by Eq (79)) experienced in one day is of

such a magnitude that the orbits of the second day

are out of phase with those of the first day, then

the lune-shaped uncovered areas below the total

coverage region will be partially or totally covered

by the swaths of the second day. The diurnal

longitudinal shift of the ground track is

&A d = n&A T

where

- 360 ° (82)

n = the integral number closest to -- J

_nodal

or that for which &A d is minimum

d = one sidereal day, 86,164 mean solar
seconds.

Equation 82, plotted in Fig. 39, is then a quantity

of interest in determining coverage available over

several days. Of course, for missions of long

duration, total coverage is available in the latitude

range L = lli + _, provided that the ground track

does not repeat diurnally. When mission length

is limited to a few days or weeks, and total cover-

age of a specified latitude range is required,
optimum coverage is achieved by selection of

orbit altitude and inclination such that

AA d = ik-----AA (h, i) (83)
m T

where

k = an integer

m = mission length in days.

An orbit chosen on this basis would obviously pro-

vide the most uniform coverage with minimum

overlapping of ground swaths.
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Latituderegionof totalcoverage_.__

Equat o r

b. Pattern coverage (Ref. 3)

If mission requirements specify continuous
total coverage of a large area by at least one

satellite or frequent coverage from low altitudes,

more than one satellite will be required. Optimiza-

tion of coverage available from a pattern of several

satellite orbits requires a somewhat different ap-

proach th_n that for the single satellite case.

(1) General approach

It is obvious that infinitely many possible

arrangements of orbital planes and satellites in

orbit could be considered for a satellite pattern

covering either some well-defined region or the
total surface area of the earth. To simplify the

problem and provide for constant angular separa-
tions between the orbital planes, consider that the

orbit planes are equally inclined to the equator.
Second, the uniform coverage requirements can

be best met by arranging the nodes of orbital

planes at equal distances along the equator, by

distributing satellites in equal numbers among

all the orbital planes and by placing satellites in
circular orbits of common altitude (so that the

distances between all the satellites in one ring

will be as uniform as possible).

In Ref. 5 the following set of equations is pre-

sented for optimization of satellite networks for

zonal coverage of a latitude belt in both hemi-

spheres (see the accompanying sketch), consider-

ing N the total number of satellites, n 1 the number

of orbit planes and n 2 the number of satellites in

each orbit plane:

Lmin " tan-1 I tan i cos

- sin-1 1I_ l- sln 2

\nl/

sin F }

i sln 2 F(k+l_ w]
L\ nl /

(85)

where F is the ground swath angular half-width,

given by

- sin -1 [sin Lma x cos t

sin I] (86)
- cos nl cOSLma x

Note: 0 < P < 90° is required, also

Trp <cos -1 1 - sin 2 t sin 2 nl (87)

k = the least integer such that

k>
nl nl [cos i/ cos2p

--2- - 2 ---_ tan-I ksn--l-6-_l-sin 2 i sin 2 _---

n I

-I

L

max _Latitude region

///_:_ for total

hrnin " _f-j : a"_" coverage

Equator

 co, C os(V) o  
+ _ } - i) (84)

(88)

= minimum incidence angle for the sensor.

The relationship between the ground swath angular

half-width, F, and the ground coverage angle, ot ,

is given by

cos a=cos r cos -- , (89)
n 2

as shown in the accompanying sketch, in which
consecutive satellites in the same orbit are

located at A and B.
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In Ref. 5 the above equations are solved for
various polar and inclined orbit planes, as shown
in Figs. 40 through 43.

Figure 40 gives the total number of satellites,
N, required for polar orbits consisting of from
2 to 6 orbit planes. As a numerical example, a
reconnaissance system of 36 satellites providing
complete global coverage is considered. The
results are shown in the following table:

Orbit Satellites [
Planes Plane Required Altitude

h
nl n2 (kin)

2 18 2780
3 12 1245
4 9 968
6 6 1245
9 4 2780

Considering sensor limitations, the 4-orblt

plane system is obviously optimum for the case
considered.

Figure 41 gives the comparison between the
theoretical optimum curve and the practical
optimum curve for polar orbits with minimum
incidence angle a = 0% The effects of increasing
minimum incidence angles are also shown.

Figure 42 gives the comparison of polar
satellite networks providing coverage from the

poles to a fixed minimum latitude Lmi n, con-

sidering cr= 0° and Lmi n =60 °, 30 °and 0* (note

that Lmi n = 0° gives the complete global coverage

given by the step-function on Fig. 41).

Finally, Fig. 43 shows the comparison of
inclined satellite patterns to the polar pattern
for complete coverage. It can be seen that polar
orbits are preferable, at least under 3500_m
altit ud_s.

As a more particular example, following

slightly different lines of approach, the optimiza-
tion of a specific orbit pattern is analyzed more
fully in the next subsection.

(2) Specific example: 6-hour orbit pattern

Although the equations and data presented in
the preceding subsection provide a general basis
for orbit pattern selection, a specific mission
may present special problems. As an interesting
example, consider the selection of a navigation
satellite orbit pattern which must fulfill the re-
quirement that at least three satellites be visible
from any point on the earth's surface (and, there-
fore, from any point in space near the earth) at
any given time. Definition of the required pattern
entails specification of each of the following param-
eters:

(I) Orbital period (i.e., altitude).

(2) Number of satellites in each ring.

(3) Orbital nodal positions (number of
rings).

(4) Orbital inclination.

(5) Orbital eccentricity.

The synchronized pattern obtained from these

considerations must also be subjected to a pattern
proof, including the effects of small changes in
inclination. The earth's oblateness effects are
included in the determination of the exact orbital
altitude.

The altitude of the navigation satellites depends
on a large number of factors as noted in Section A.
Some of the most important are:

(i) Resolution limitations.

(2) Perturbations.

(3) Repeatable daily ground track.

(4) Number of satellites employed.

(5) Van Allen radiation belts.

For the best resolution at sea level, the

satellite orbits should be as low as Possible. On
the other hand, oblateness perturbations are
largest for low altitude orbits; for higher orbits
the perturbations caused by the sun and the moon
increase in relative importance. A repeatable
daily ground track will simplify the preparation
of the required ephemeris which makes navigation
Possible; therefore, it is desirable to have an

integral number of revolutions per day. The
number of satellites in a given ring will further
define the necessary altitude and period for the
desired ground coverage. To keep the molecular
breakdown of the solar cells and similar electronic
apparatus to a minimum, the Van Allen radiation
belts should be avoided as much as possible.

From all the above considerations, the 6-hr

orbit was considered as the most promising for
the present application.
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The 6-hr orbit retraces its ground track on a

daily basis and that ground track results from

four orbital revolutions. For an ideal spherical

earth, the period of this orbit would be exactly

one-fourth of a sidereal day. Since the earth is

actually oblate, the orbit plane regresses slowly;

and in order to repeat the desired ground track

(i.e., to achieve a sidereal period of 21, 541,02

mean solar seconds), the semtmajor axis required

is 16738.13 km. (A complete set of synchronous

orbit semimajor axes is inc]uded in Section D. 2.)

Tile circular orbit altitude corresponding to this

value of semimajor axis is about 10,360 km.

At this altitude, the ground coverage is 135.26 °,

as can be seen in the following sketch:

Satellite

2a= 2 cos 1 = 135.26 °

Thus, three or more satellites will be required

to provide continuous coverage of a band on the
earth (the width of this band being a function of

the number of satellites). Because the overlap

of the covered areas is small with only three

satellites per ring, four satellites will be placed

in each ring at 90 ° intervals. In general, only
one satellite is seen on the earth's surface from

a given satellite ring. Furthermore, there are

two areas around the axis perpendicular to the

orbital place of a given satellite ring where no

satellites from this ring are visible. To ensure

that in these regions at least three satellites are
visible, three more satellite rings are required,

placed so as to make at least one satellite visible
from each additional ring at all times. Since

uniform ground coverage is desirable, the nodes
for the four satellite rings must be displaced

from each other by 90 ° on the equator. This

brings the total number of satellites employed in

the navigation pattern to 16.

To equalize oblateness perturbations for the

four orbital planes, the inclinations must be

equal. From this condition, it can be seen that

the most symmetrical distribution of orbital

planes in inertial space results if each set of
two planes intersects at a latitude of 45 ° {that is,

halfway between the poles and the equator). The
orbital inclination which satisfies these conditions

was found from spherical trigonometry as:

tan L x ]i =tan -1 'sin (Ax-12) j = 54. 736 °

Orbital eccentricity produces periodic relative

motion of the satellites in each ring (Fig. 44)

which, in turn, produces irregular ground coverage.
While this in itself does not eliminate eccentric

orbits from consideration, it does make the re-

suiting analysis and pattern utilization more diffi-
cult, because the solution for position as a func-
tion of time becomes transcendental. For these

reasons, the orbits considered are circular (i.e.,

zero eccentricity).

To avoid crowding a considerable number of

satellites over the same region of the globe, one

satellite was placed at the node for Planes I and

II {which are consecutive), while the positions

in Planes III and IV were displaced by 45 ° . The

initial latitudes, longitudes and central angles of

all 16 satellites are given in Table 3.

TABLE 3

Initial Positions of 16 Satellites

Orbit Plane

and Satellite

Numbers

I-1

I-2

I-3

I-4

II- 1

II-2

II-3

II-4

III- 1

III-2

III-3

III-4

IV-1

IV-2

IV-3

IV-4

Latitude

(L 0 )

(de_

0

54.7N

0

54.7S

0

54.7 N

0

54.7S

35.3N

35.3N

35.3S

35.3S

35.3 N

35.3N

35,3S

35.3 S

Longitude

{%)
(deg!

180 W

9O W

0

9O E

9O W

0

90E

180 E

30E

150 E

150 W

30W

120 E

120 W

60W

60E

Initial

Central

Angle (e 0 }

(deg)

0

9(]

180

270

0

90

180

270

45

I35

225

315

45

135

225

315
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The ground track of a satellite, as noted in

Section C, is given by the equations:

L - sin-1 [ in i (% + 0)]  90)

-_t
e

f91)

where flight time is given for a circular orbit

by the equation

_r

t _ (_2--r7) e. (92)

A complete ground track during one day was

computed for the first satellite in the first orbit

plane by Eqs (90) and (91), The result was plotted

in Fig. 45. It should be noted that the same pat-

tern of four revolutions is identically repeated

during each day. This is due to the fact that the

sidereal period is exactly one-fourth of a sidereal

day.

Initial positions and ground tracks for one-
half of a revolution are given in Fig. 46. It is

obvious from this figure that the distribution of

satellites is not completely uniform over the
earth's surface at all times. However, there

are no serious crowding problems and thus, this

pattern is satisfactory.

The placement of the four orbit planes in

three-dimensional space is indicated in Fig. 47.

The first of the two drawings shows the inter-

sections of the orbital planes in inertial space
{the earth should be visualized as rotating within

this fixed framework). The second drawing shows

the initial positions of the 16 satellites as given

in Table 3 and Fig. 46 (except the ones hidden by
the earth).

The proof of satellite pattern. It must now

be s-h-own that the pattern specified actually

satisfies the requirement that at least three of the

vehicles are always visible at any point on earth's

surface. Secondly, small changes in the orbit

inclination must be investigated in order to justify

the optimum inclination selected (i = 54. 736 °).

In order to rigorously prove the satellite pat-

tern, the concept of ground swath was used.

Swath in the case of this problem is defined as

the region on a nonrotating earth where at least

one of the four satellites in the ring is always
visible.

From Eq (89), it can be seen that the width of

the ground swath (to either side of the ground

track) is given by:

__ COS _Y _ =

180 _ 180 °
__ =

n 2 -4 45°

Outlines of ground swaths were obtained as in-

dicated in Section E. 1. a. Areas not included by

the swath generated by the satellites in four orbit

planes are shown in Fig. 48. No satellite from

the ring indicated by the Roman numeral is visible
inside either cross-hatched area of the same num-

ber. Because no cross-hatched areas intersect,

the figure proves that at least three satellites

are visible at all times at every point on the earth's
surface. On a rotating earth the eight cross-

hatched areas must be visualized as moving with

a 24-hour period but maintaining the given topo-

logical pattern. The horizontal and vertical

distances between any two adjacent cross-hatched

areas are essentially equal (5.4 ° on a great circle).

The effects of small changes in orbit inclina-

tion on the pattern of circular areas shown in

Fig. 48 may be investigated by means of the

equations of Section E.l.a, with swath width

denoted byF instead of c_.

The results of the foregoing analysis are pre-

sented in Fig. 49 which shows that the require-

ments placed upon the pattern can only be met in

the range of orbital inclinations between 49.6 °
and 57.4". The selection of the optimum inclina-

tion with this range must be based on visibility
criteria because there are definite limits which

must be imposed on the minimum elevation angle

between the satellites of the pattern and the hori-

zon to make navigation practical. This optimum

inclination angle is 54. 736 ° because only this in-
clination ensures that all of the visible satellites

will be at least 5 ° above the horizon. This analy-

sis also proves that the minimum altitude for a

pattern of 16 satellites, which will ensure a mini-

mum elevation angle above the horizon of 5 ° for at
least three of the satellites at all times, is that of

the 6-hr orbit,

2. Point Coverage

In many satellite missions, area coverage as

discussed in the previous section is not a firm

requirement; rather, it is desired to maximize

the time spent over a specific set of points on the

earth. These locations may be tracking stations,

ground data links, landing sites, or points under

surveillance. Various problems connected with

point coverage are considered in this section.

a. Determination of the zenith angle of a
satellite

A problem of interest to satellite tracking and

communication is that of determining the conditions

under which the satellite is visible, or above the

horizon, when viewed from a point on the earth.

To solve this problem assume that a satellite S

is in an orbit inclined at angle i to the earth's

equator_and assume a point of observation P on
the earth at alatitude L. Consider a coordinate

system, its origin at the point of observation,
with the Z-axis vertical, the X-axls due east (i. e. ,

in the direction of motion of the point of observa-

tion) and the Y-axis due north. Let the distance

from the center of earth to the point of observation
be R and the distance from the center of the earth

e

to the satellite be r.

The satellite' s position is determined by a central

angIe Cs measured in the orbital plane from the

ascendin,{ node, and the position of the point of
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observationis determinedbyanangle¢emeasured
fromthelongitudeoftheascendingnode(Pig. 50).
Intermsoftheusualvariables,theanglesSs
andSearegivenas

_Ps= _ + 9 where A = longitude of
P observation point

¢e TM % - A A = longitude of nodal
n n point

The coordinates of the satellite in the X, Y,

• Z system are as follows:

x = r (cos i sin _S cos _e - cos $S sin _e )
#-

y = r [cos L sin I sin 0_S - sin L (cos ¢S cos ¢_e

+ cos i sin ¢S sin Ce )]
p-

ffi r /sin L sin i sinews + cos L (cosZ *s cos Ce

+ cos i sin ¢S since )] - R

The distance between the point of observation and
the satellite is

/

p =_r 2 + R - 2 r R cos

where

cos @ = sin Lp sin i sin ¢>S + cos Lp (cos ¢>e cos ¢S

+ cos I sin _e sin ¢S )

and @ is the angle between the radius vectors from
the earth' s center to the point of observation and

to the satellite (see Fig. 50).

The direction cosine, I z , (i.e., the cosine

of the angle 5 between the Z-axis and the radius

vector from P to S) is

z p

r cos _ - R

r 2 +R - 2r R cos

cos @ - 1

= .

<+)1+ - _- cosqJ

The satellite is above the horizon as viewed

from the point of observation if I z >0 and, since

! is the cosine of the satellite's zenith angle,z

any value of the satellite elevation angle can be

specified and the corresponding Iz determined.

Any I above this value corresponds to a satellite
Z

passage at an elevation angle equal to, or hi_her

than, the specified value.

For the point of observation cpe = (_e + _) t + q_l"

where

= the rate of regression of the nodes of
the satellite (tad / secl

_I = Ap0 - An0

For the satellite ¢S = ¢S (t) + ¢0' where ¢S (t) is

the equation relating the central angle to time in

the general elliptical case, and ¢0 is the initial

angle of the satellite with respect to the ascending

node. For a circular orbit ¢S (t) = coS t, where

u S is the angular velocity of the satellite. The use

of these equations is illustrated by the following

example.

Assume an orbital inclination angle of 30 °
and a point of observation at a latitude of 30 °.
Assume further that the satellite ts in a circular

orbit at an altitude such that it makes 15 revolu-

tions relative to the ascending node In the time it
takes the earth to make one revolution relative to

this node. The regression period is then about

50 days and the period of the satellite about 1.59

hr, rather than the 1.6-hr period if the regression

were neglected. For this example this small

difference is neglected and a satellite altitude of

357 star mi and r/R e = 1. 0902 is assumed. To

find when the satellite is above the horizon for a

point originally along the meridian through the

node at the time the satellite was at the node (i. e.,

¢_1 =dO0 = 0, Ce = _e t and¢s = 15 f2e t), the pro-

cedure is first to plot

1. 0902 cos q_ - 1ffi cOs 6 ffi
z I

_1 + (1. 0902) 2 - 2 (1. 0902 cos _)

as a function of cos _ (Fig. 51). Note that I > 0
Z

for 0.9173 cos d/< 1. Next plot cos @ as a func-

tion of Ce = ne t (Figs. 52 and 53). The values of

¢>e for which 0. 9173 < cos @ (indicated on the fig-

ure by a solid line) then represent the values of
t @e/De, for which the satellite is above the

horizon. If it is required that the satellite be 30 °

above the horizon, then 0.5 <I and 0.9916 < cos
Z

@. This line is indicated on the figure by a dotted

llne. The angle 6, defined by cos 6 = Iz, is

actually the zenith distance of the satellite and the

angle ¢>e can be considered the "hour angle" of P

with respect to satellite node.

Finally, Fig. 54 presents in English units a
solution for the line-of-sight range to the satellite

and the distance of the subsatellite point from the

observation point on the earth's surface. This

information is presented in different form in

Figs. 55 and 56, also in English units. It should

be noted that Figs. 35 and 36 present the same
information in metric units when the coverage
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half-angle,a, is interpreted as ground range, d,

and the minimum viewing angle, _, is interpreted
as elevation, ¢ .

S

b. Visibility time durations

Visibility times for satellites in elliptical

orbits must be computed from Kepler's equation,
tabulated in Chapter 3. However, in the case of

circular orbits, the equations for visibility time

are sufficiently simple to warrant presenting

parametric results. Visibility time from a point

on a nonrotating earth is then

( )
-1 R

=
t v 180 o _ r (93)

where r = circular orbit radius. The visibility
time of a satellite moving in a circular orbit

exactly in the direction of the earth's rotation is

T e

iv+ = t v • _ _, (94)
e

where

7 e = period of earth rotation, 86, 164 sec
t..----

_" = orbit period = 2_r r Jr
vt_

For satellites moving directly opposite to the

direction of the earth's rotation, the visibility
time is

7
e

t -t
V V Te+ T

(95)

Equations (93), (94) and (95) are plotted in Figs.

57 and 58.

c. Visibility and call-down time computation

The computation of call-down time (the time

interval during which a vehicle may initiate a

landing sequence terminating at a specified land-

ing site) or visibility time proceeds by solution

for the intersections of the ground track, as given

by the equations of Section D, and the perimeter

of a test region. In the case of visibility time,

the test region is ,_

simply the spherical / / \

segment determined "I" _"_ \

by the maximum / -- " _ \ _%

ground range of the / ' ] _

tracking station. The _ _ ,/ I

perimeter of the test J l t

region is then given _ i ]
by Eqs (65) and (68) _ I /

where (L 0, A O) is in- k , / /

terpreted as tile loca- "_k , ,, I\ / /

tion of the tracking
station and ffis the

maximum ground range. In the case of call-down

time the shape of the test region is a function of

the maneuverability of the landing vehicle. This

particular subject is treated in some length in

Chapter VIII.

F. SENSOR LIMITATIONS ON ORBIT SELECTION

The selection of orbit elements to best fulfill

given mission requirements must obviously be

subject to any sensor limitations. Although sen-

sors may take a wide variety of forms, considera-

tion will be limited to the two largest classes,
optical and radio systems. The primary limita-

tions of these systems are power and resolution

requirements.

i. Radio S_fstems

An important limitation of radio systems and

the primary limitation for communication applica-

tions i,_ the restriction on range imposed by

transmission power limits. The range equation

may be written in several forms:

Pr_ Gt Ar

Pt 4n pg

G r A t

- --_2"-

47r P

G t G r X 2

(47r p) 2

(96)

A t A r
= __

(x p)2

for simple one-way transmission.

Where

Pr = received signal power
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Pt = transmitted power

A r = effective area of the receiving antenna

A t = effective area of the transmitting
antenna

G r = receiving antenna gain

G t = transmitting antenna gain

k = wavelength

p = range from the transmitter to the receiver.

In skin tracking, the transmitted radio beam is

reflected by the object tracked• and a portion of

the reflected energy is then received at the trans-

mitter station. For skin tracking, then,

Pr Ao Ar Gt Gt Gr k2 Ao

l_t = (4zr p2)2 = 4:r (47r p2)2

where

(97)

A ° = scattering cross-section area.

Typical gains and effective areas for use in the
above equations are contained in Table 4 from

Ref. 6.

TABLE 4

Effective

Antenna Gain Area

[sotropic

infinite simal dipole

Half-wave dipole

Optimum horn

ParabolQ. or lens

Broadside array

1.5

1.64

10.0A

(6.3 to 7.5) A

• k2

A (maxim urn)

47r

1.5k 2

i. 65 k 2

Zf_

0.81 A

(0.5 to 0.6) A

A (maximum)

The minimum detectable signal is not deter-

mined by the ability to amplify the signal, but by

the noise which obscures the signal. That is• if

no interference were present, any signal trans-

mitted over any distance could be detected by

providing sufficient amplification in the receiver.

Noise limiting the usable range may enter the

radio system at the transmitter, at the receiver or

in the space link. The noise power produced in

a bandwidth zkf is given by

Pn = kT _kf (98)

where

k = Boltzmann's constant : 1.38 x I0

w- sec/° K

-23

T = absolute temperature of the circuitry•
OK

zM = bandwidth, cps

The temperature T is the weighted sum of the

various component source temperatures, the

weights being high (unity) for noise sources in-

ternal to or surrounding the receiver or low if
the noise enters through a fraction of the receiver

surroundings. Typical equivalent temperatures
of internal receiver noise are 2000 ° K for con-

ventional receivers, 100 ° Kfor parametric

amplifier receivers and 10 ° Kfor masers. Equiv-

alent temperatures of external noise are dependent

on frequency and, in the case of atmospheric

noise, on elevation angle. External noise is
shown in the following sketches from Ref. 6.

The blaekbody radiation of the earth also com-

prises a noise source which increases for low

elevation angles. Thus, low altitude satellites,

which spend relatively long times near the horizon

of an observer on earth• entail greater noise
problems. Other sources of noise are the sun,

the moon and the planets,

1000 1 _ Elevation angle

[--Cosmic from horizon

_noise k

\,f- Mi n_m um 0 °

E atmo herie

- \ L-Maximum

10-

5O

90

1 I I i
100 1000 10,000

Frequency (Mc)

The ratio of received power, Pr' to inter-

ference power in the bandwidth Af determines

the range at which communication is feasible.

A ratio of unity is defined as threshold reception.

The threshold reception range for space-to-earth
communication is

(99)

Usable ranges may be about one-third of this

value.
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In addition to range limitations, missions em-

ploying radar systems may encounter resolution

problems. The angular resolution of a radar is
determined by the narrowness of the antenna

beam. The apparent angular extent of an object

detected is increased by the width of the antenna

beam, and objects separated by less than the

beamwidth are interpreted as a single object.

Consequently, for a given system bandwidth,
the minimum resolution distance increases with

increased altitude. Range resolution depends

mainly on the pulse duration of the transmitted

signal.

Just as noise determines the minimum detect-

able signal for range limitations, the obscuring

of echoes by ground clutter and sea return is
closely related to resolution capability. For

example, in detection of a ship by means of an

overhead airborne radar, difficulty is experienced

in distinguishing the ship from the sea because

the ranges differ by less than the pulse duration.

The problem of relating radar resolution in the
presence of clutter to orbit altitude is too complex

to consider here except by generally noting the

importance of low altitudes in achieving high

resolution and minimizing power consumption.

2. Satellite Photography Systems

Resolution attainable in satellite photography

is related to orbit altitude, and so the photographic

system limitations are factors in choice of orbit

elements. Investigation of this relationship, in

order to be meaningful, must consider the entire

photographic system performance in some detail.

Among the factors which determine the degree

of detail that can be detected or identified by &

visual or photographic system are the object
distance and the focal length of the viewing lens.

The ratio of object distance, d, to focal length, f,
is referred to as tlle scale number, S.

S : d (i00)
f

Then one cm on a photograph corresponds to S

ems on the ground. Thus larger scale numbers

mean greater difficulty in discerning fine detail.

A second parameter useful in defining optical

system capability is resolution, the ability to
distinguish parts of an image. In photography,

resolution is the ability of a film-lens system
to distinguish a standard pattern of black and

white lines. Thus a film-lens system may be

described as providing resolution of rf lines per

millimeter. Ground resolution is the distance on

the ground equivalent to one barely resolvable

line. Thus, if a film-lens system provides a

system resolution of rf lines per mm, and the

scale number is S, the ground resolution, rg, is

S
r = -- (i02}

g rf

In terms of commonly used units,

S

rg (meters} = _ per millimeter_ "

Although ground resolution is a ratio, the effects
of graininess influence a selection of lower values

of Sand rfto attain a given rg. From Eqs (101)

and (102), the maximum orbit altitude can be

determined as a function of system resolution,

focal length and ground resolution.

h = 1000 frfrg (103)

where

h = orbit altitude in meters

f = focal length in meters

r = ground resolution in meters
g

rf = system resolution in lines per ram.

Equation (103) is plotted in Fig. 59. However,

in order to use this data or Eq (103) it is neces-

sary to describe the quantity rf (or system

resolution). This resolution is a function of

many separate factors and will be discussed

in the following paragraphs.

The overall performance of a photographic

system depends on the contribution of each

element of the system. The elements of a photo-

graphic system are:

(I) The scene, with its contrasts.

(2) The atmosphere, which modifies the

light from the scene before it enters

the optical system.

(3) The optical system, which images
the scene on the film.

(4) The camera system, through which

uncompensated motion and vibration

enter the system.
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(5) The film, which records the final

image.

Each of the elements which follows the scene

alters the contrast in a different manner. It is

desirable to have a method of analysis which
permits the examination of each of these elements

in the same terms so that the individual elements

can be compared on a common basis, and which

presents the result in the same terms.

Such a method is the sine wave response

analysis which describes the effects of each

element in terms of its modulation transfer

function, T (K}. The method is analogous to
the transfer function analysis of servomechanisms
in which the modulation transfer function describes

the response of the element as a function of the

spatial frequency. The overall system performance

is then the product of the modulation transfer func-
tions of the individual elements.

a. Modulation transfer function

Consider a scene in which the intensity varies

according to the following relation

/27r K_

I = IA+ IV sin _0 ].

This is a series of lines spaced K 0 units apart

(see following sketch). The maximum intensity

is I A + I V and the minimum intensity is I A - IV,

with the intensity varying sinusoidally between
these limits. Since all of the lines are the same

distance apart, they represent a constant spatial

frequency, K 0. The modulation transfer function

can be defined as the ratio of I V to I A. Therefore

for this scene the modulation transfer function T (K0)

is given by IV/I A.

Now consider the image which is produced when

light from a scene (see following sketch) which

has a modulation transfer function of unity but

IIIIIIIIIIILlllmllllltl;llL,
increasing spatial frequency is passed through a

diffraction limited lens. At some spatial frequency
the diffraction patterns of the individual lines begin

to overlap and the contrast in the image is reduced.

As the lines become closer together the contrast

becomes further reduced until at some frequency

the lens gives essentially no response to the
modulation in the scene. The modulation of the

scene-lens combination might appear as shown

in the following sketch. The corresponding

transfer function is given in Fig. 60. Since
the scene has a modulation transfer function

of unity, Fig. 60 is the transfer function of
the lens alone.

By determining the modulation transfer function
of each element of the system, the modulation

transfer function of the final image as recorded on

film can be determined, thereby determining the

f
v

<D

H

I
V

I A

I
Z
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performance of the system. The modulation trans
fer function of each of the elements of the system
is discussed in the following paragraphs.

b. The scene

The scene to be photographed is usually a
complex mixture of contrasts and spacings,

and its transfer function, although theoretically
obtainable, is too complex to be of practical
value. Fortunately, we are rarely interested

in the performance of the system against a
particular scene; we are usually interested in
the ability of the system to resolve detail.
This can be done by evaluating the system per-
formance against an artificial scene which
lends itself to analysis, such as the scene
represented in the foregoing sketch.

Such artificial "target" scenes are character-

ized by a constant contrast, and therefore a con-
stant transfer function, for all spatial frequencies.
The transfer function varies with the contrast in

the following manner:

C-1
T C = _ (i04)

where C is the brightness ratio of the peaks to
the valleys of the sine wave.

Equation (104) is plotted in Fig. 61. The scene
contrast is seen to act as a "gain" factor which
multiplies the system sine wave response, and,

therefore, to compare systems on a common
basis, it is necessary to use a common value of
scene contrast. For satellite photography a
brightness ratio of 8.1 is usually assumed.

c. The atmosphere

In addition to the obvious effect of clouds, the

atmosphere affects the system in two ways. The
first of these, scattering, causes some light from
the sun to be scattered directly into the system
and some image forming light from the scene is
scattered out of the system. From a satellite,
looking through the entire thickness of the atmos-
phere, the scattering causes the target contrast

to be reduced by a factor of four, so that the ef-
fective contrast seen by the system is 2:1, giving
a transfer function of 0.33 from Eq (104).

The second effect is due to turbulence, and it
affects only very high acquity systems. The tur-

bulence causes a random angular displacement of
the rays making up the image, and its value for
satellite photography has not yet been adequately
determined. It is felt that it will limit the ulti-

mate system performance to the order of one foot.

d. The lens

The transfer function of the lens depends on
its diffraction pattern and aberations, and for a
particular lens this can be measured after the
lens is manufactured. For system design, which
must be performed before the lens is manufactured,
it can be assumed that the lens has no aberations

and is diffraction limited. For a well designed

lens, this will be very nearly true on axis, but at
the edges of the field the performance will be con-

siderably reduced.

The modulation transfer function for a diffrac-

tion limited circular aperture, when viewing a

line image, is given by Ref. 7

(105)

where

A =NX

X = wavelength of light

N = focal ratio if-number) of the lens

K = spatial frequency

The transfer function of an f/4 lens for light of
6000 A was given in Fig. 60. Equation (102) is
plotted in Fig. 62 and the transfer function for
f/1 to f/ 12 lenses ts given in Figs. 63 and 64.

eL Image motion

The camera introduces two types of image mo-
_ion into the system, vibration and linear motion.

Although it is generally impossible to determine
the expected vibration environment at the time of
system design, the transfer function for vibration
is useful in that it can be used to determine an al-

lowable vibration level which will not seriously

degrade the system. By finding that transfer
function which degrades the system performance
by the allowable amount, the vibration level which
produces the transfer function is determined.

The transfer function for vibration is given by

T(K) = J0 (= AK) (Ref. 7) (106)

where

J0 = zero order Bessel function

A = amplitude of the vibration

K = spatial frequency

Linear motion between the film and the image
during the exposure time can arise from several
sources. These include:

(1) Uncompensated vehicle rotation rates.

(2} V/H measurement errors.

{3) Camera pointing errors,

(4) Film drive speed errors.

The magnitude of the motion from these sources
can usually be predicted at the system design
stage and the effects of the motion can be calcu-
lated.

The transfer function for linear motion is given
by Ref. 7.

T(K) = sin _ AK
Ir AK (107)
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where
A = distanceofthemotion(inthe

focalplane)
K = spatial frequency

Equation (107) is plotted in Fig. 65.

f. The film

The modulation transfer function of the photo-

graphic film is determined experimentally and
can be obtained from the film manufacturer. An

example of the transfer function that might be ob-
tained from satellite photography films is shown
in Fig. 66.

g. Interpretation

The overall system transfer function represents
the response of the system to lines of width which
vary from very broad, to lines which are finer
than the system can resolve, and therefore is a

good description of the system performance. How-
ever, it is often desirable to describe the system

performance in terms of a single number, the
resolution. It has been found that the minimum

detectable resolution occurs at a response of 0.04,

and the spatial frequency at which 4% response
occurs is becoming accepted as the system resolu-
tion.

h. Illustrative example

To illustrate the use of modulation transfer

functions in analyzing systems, the following ex-
ample is presented. Assume the following system
characteristics:

Aperture--18 in. or 0.492 m

Focal ratio--f/4

Orbital altitude--125 naut mi or 232 km

Image motion--equivalent to 2.5 x 10 -6 rad

Target contrast 8:1, reduced to 2:1 by the
atmosphere.

These values lead to the following transfer func-
tions:

The lens, being f/40 is described in Fig. 60.

The image motion is determined as follows:

A = 2.5 x 10-6 rad x 72 in. {focal length}

x 25.4 millimeters/in. = 4, 57 x 10 -3 mmo

This yields the transfer function shown in Fig. 67
for image motion. The film will be represented
by the transfer function of Fig. 66. Table 5 gives
the values of the transfer function for the example,

and they are plotted in Fig. 67.

The 4% response point is seen to occur at 140

lines per millimeter. The corresponding resolu-

tion' in the scene is determined by multiplying the
distance in the image {11140 ram), by the scale

number, as in Eq (103)* or utilizing Fig. 59.

TABLE 5

Transfer Functions for Illustrative Example

Spatial The Scene
Frequency + Atmos-
lines/ram) phere

0.3310

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

2O0

Image
Lens Motion Film

0.96 0.99 0.96

0.93 0.98 0.90

0.90 0.96 0.85

0.87 0.94 0.80

0.84 0.91 0.74

0.81 0.88 0.70

0.78 0.84 0.66

0.75 0.79 0.63

0.72 0.74 0.60

0.69 0.68 0.58

0.66 0.63 0.55

0.63 0.57 0.53

0.60 0.51 0.51

0.57 0.45 0.50

O. 54 O. 39 O. 48

O. 51 O. 33 O. 47

0.48 0.27 0.45

0.45 0.21 0.44

0.43 0.16 0.43

0.40 0.10 0.41

Overal]

System

0.30

0.27

0.24

0.22

0.19

0.16

0.14

0.12

0.11

0.09

0.08

0.06

0.05

0.04

0.03

0.026

0.019

0.013

0.010

0.005

1 125 miles 1 in.
rf = _mmx 72 in. x 25.4 mm

x 6076 _ = 2.97 ft
ml

= O. 974 m

i. Tabulation of transfer function values

Reference 7 also presents the following table
of values for the transfer functions.

TABLE 6

Values of T(K)

AK I0 (_AK)

0.05 0. 994
0. l0 0. 975

0.15 0. 945
0.2O 0. 904

0.25 0. 854
0.30 0. 790

0.40 0. 646
10.45 0.560

sin -AK/-AK

O. 996
O. 983

0. 963
0. 935

0.900
0.858

0.756
0.699

2 [cos-i (AK)

-AK _ - (AK2_

0. 963
0. 873

0. 810
0. 747

0.685
0.623

0. 506
0. 442

(continued
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TABLE 6 (continued)

AK

0.50
0.60

0.70

0.75

0.80

0.90

O. 95

1.00

J0 (_AK)

0. 473

0. 293

0. ii0

0.025

sin lr AK/ TrAK

0. 636

0. 525

0. 368

0. 300

0. 234

0. 109

0.052

0

2 [cos -iF (AK)

- {i

0. 389
0. 285

O. 188

O. 138

0. 104

0.038

0.015

0

i.

2.

3.

4.

5.

6.

7.
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APPENDIX A

GLOSSARY (REF. 1)

A
Aberration: apparent displacement of a body from

its actual position due to the observer's motion,

the object's motion and the finite speed of light.

Aberration, planetary: aberration including ef-

fects of the object's motion as well as the ob-

server's motion during the time light travels
from the object to the observer.

Aberration, stellar: aberration including only the

effect of the earth's motion around the sun,

mean value 29.9 km/sec.

Ablation: the gradual removal or erosion of an

exposed surface of an object resulting from

its high speed passage through a resistive
medium.

Abort: the termination of a space mission after

an emergency forces return to earth.

Albedo: fraction of total incident light reflected

by a body.

Albedo, average geometric: ratio between the

average brightness of the object to the bright-
ness of a white screen of the same size nor-

mal to the incident light (lunar albedo 0. 105).

Albedo, spherical: ratio of the light scattered in

all directions by the object to the total incident

light (lunar albedo = 0. 073).

Almucantar: a parallel to the horizon.

Altitude (also elevation): a topocentric coordinate

in the horizon system; the angular distance

of an object above the horizon, measured on

a vertical circle. Also synonymous with the

height of an object above some surface.

Analytical integration: the specification of an ex-

plicit closed algebraic or series relation to

represent the integral of a given function.

Angular momentum: the quantity mrx r (= r 2 {_

in polar coordinates) constant for conic mo-

tion.

Anomaly: or angle; see true anomaly, mean
anomaly, and eccentric anomaly.

Aphelion: the point on a heliocentric ellipse
farthest from the sun.

Apocynthion (also aposelene or apolune): the

point on a selenoeentrie elliptic orbit farthest

from the moon's center.

Apofocus: the apsis on an elliptic orbit farthest

from the principal focus or center of force.

Apogee: the point on a geocentric elliptical or-
bit farthest from the earth's center.

Apsis (plural, apsides): the point on a conic where
the radius vector is a maximum or minimum.

The line of apsides is the major axis extended

indefinitely.

Argument of latitude: the angle in the orbit from

the ascending node to the object in the direction

of motion; the sum of the argument of perifocus

and the true anomaly.

Argument of perifoeus: the angular distance

measured in the orbit plane in the direction of

motion from the lines of nodes to line of

apsides.

Aries: an astronomical constellation; a portion of

the celestial sphere which contained the vernal

equinox.

Aries, first line of: the direction of the vernal

equinox (the name is a carryover from a time
that the vernal equinox was in the constella-
tion Aries).

Aspect: angular position of a body relative to its
line of advance in orbit.

Astrodynamics: the engineering or practical ap-

plication of celestial mechanics and other allied

fields such as high altitude aerodynamics;

geophysics; attitude dynamics; and electro-

magnetic, optimization, observation, naviga-

tion, and propulsion theory, to the contemporary

problems of space vehicles. Astrodynamics

is sometimes also meant to include the study

of natural objects such as comets, meteorites

and planets.

Astronomical unit (AU): the mean distance or

semimajor axis of the orbit of a fictitious un-

perturbed planet having the mass (0. 000,002,819
solar masses) and sidereal period (365. 256,383, 5

mean solar days) that Gauss adopted for the

earth in his original determination of the grav-
itational constant K (= 0.017,202,089,95).

s

Approximately equal to 92,914,000 statute
miles or 149,530,000 kin.

Azimuth: a topocentric coordinate measured in

the plane of the horizon from the north (or

south) point on the horizon clockwise to the

object.

B
Ballistic trajectory (also coast trajectory or free-

flight trajectory): motion of the space vehicle
without rocket burning or thrust forces.

Barker's equation: an equation that relates po-

sition to time for an object traveling in a

parabolic orbit.

Barycenter: center of mass of a system of
masses.
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Base altitudes: reference altitudes or levels of the

atmosphere between which the atmospheric

temperature gradient is assumed to be a con-

stant.

Boltzmann's constant: the ratio of the mean total

energy of a molecule to its absolute tempera-

ture. Its value is 1.380 x 10 -23 joule/°K.

Braking: the deceleration of a space vehicle by

rocket thrust or by atmospheric drag.

Braking ellipses: a series of ellipses whose semi-

major axes decrease due to the atmosphere of

a planet when a vehicle attempts a landing on

that planet.

Burnout: end of rocket burning for a particular

rocket engine in a given stage of the rocket.

C
Call-down frequency: the frequency with which a

vehicle can be recalled from orbit and landed

at a specific site.

Cartesian coordinate system: a set of (usually

three) mutually orthogonal straight coordi-

nate axes which form a right-handed coordi-

nate system.

Celestial equator: the great circle in which the

plane of the terrestrial equator intersects

the celestial sphere. The north celestial

pole is the point of intersection of the earth' s

spin vector with the celestial sphere.

Celestial sphere: a hypothetical sphere of infinite
dimensions, centered at the observer (or center

of the earth or sun, etc.), on the inner surface

of which the celestial bodies are projected and

appear to move. This sphere is fixed in space,

and thus, because of the earth's rotation, ap-

pears to rotate from east to west.

Centrifugal force: a fictitious position-dependent

force that apparently arises when the motion of

an object is observed with respect to a rotating

coordinate system. The relationship yielding

this "force" is -me x (,.oxr), where m is the

mass of the object and _ is the angular velocity

vector of the rotating coordinate system.

Characteristic velocity: the sum of all absolute

velocity changes required .of a vehicle for a

particular space flight (a measure of the total

energy requirement for a flight).

Circle, galactic: fundamental plane of the galactic

reference system (north pole at 12 h 44 I]] right

ascension and +27 ° declination), inclined 62 °

to the celestial equator.

Circle, hour: secondary circles of the equatorial

coordinate system, i.e., planes normal to the

celestial equator.

Circle, secondary: great circles (or planes

through the origin) which pass through the

poles of a given coordinate system.

Circle, vertical: intersections of the celestial

sphere by vertical planes in a horizontal co-

ordinate system.

Circumlunar trajectory: a trajectory from the

vicinity of the earth which passes behind the

moon and returns ballistically to the vicinity

of the earth.

Cislunar space: the region of space around the

earth and moon, usually taken as being syn-

onymous with the sphere of influence of the
earth-moon system.

Collision parameter: the offset distance between

the extension of a velocity vector of an object

at a great distance from a center of attraction

or repulsion and this center.

Colure, equinoctial: the plane, secondary to the

equator, which passes through both the celes-

tial poles and the equinoxes.

Colure, solstitial: the plane, secondary to the

equator, which passes through both the celes-

tim poles and the solstices.

Conjunction: a point in the orbit of a planet {or
moon) where its celestial longitude equals that

of the sun. If the alignment is sun-planet-

earth, the planet is said to be in "inferior con-

junction. " This configuration is possible only

with inferior planets; if it is planet-sun-earth,

the planet is in "superior conjunction. " Sim-

ilarly, when the moon (or a superior planet)
is between the earth and the sun, i.e. , "new, "

it is said to be at conjunction.

Coordinate systems: one of a number of sets of

celestial coordinate systems used in astro-
nautics (Chapter XI).

(1) Ecliptic S_stem uses the plane of the earth's

orbit (ecliptic) as the reference. The axis

of the poles of the ecliptic is at right angles

to this plane. This system is most useful for

intrasolar system work since all the planets

move in or near the plane of the ecliptic.

(2) Equatorial S_,stem uses the celestial equator
as the reference plane. The celestial equa-

tor and celestial poles coincide with exten-

sions of the earth's equator and poles on the

celestial sphere. This system is the one

most commonly used in astronomy.

(3) Horizon System uses the observed horizon
as the reference plane and is the common

system of celestial navigation.

Coriolis force: a fictitious velocity dependent

force that apparently arises when the motion of

an object is reckoned with respect to a rotating

coordinate system. The relationship yielding

this "force" is -2mc_xi_ r, where m is the mass

of the object, c0 is the angular velocity vector

of the rotating coordinate system, and i_r is

the velocity of the object reckoned with respect

to the rotating system.
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Cosmicdust: finedustparticles(micrometeorites)
thatareconcentratedin thesolarsystemin the
planeof theecliptic (e.g., givingrise tothe
phenomenonof "zodiacallight")andalso
dispersedina morerarefiedmannerin inter-
stellarspace,beingmoreconcentratedin the
galacticspiralarms; alsoa componentof
comets.

Cosmicrays(direct): high-energychargedparti-
cles(e.g., withenergiesin excessof I00Mev)
suchasprotons,alphaparticlesandheavy
nucleiwhichhaveapparentlybeenejectedby
starsandacceleratedbyvastmagneticfields
in interstellarspace.

Cosmoparticle:discretematerialentitiesofsub-
meteoriticmass,eitherin or from space.
Theymaybe "free" or individualmolecules
or atoms,or molecularor atomicconstituents
of anykind,e.g., ions,atomicnuclei,protons,
neutrons,electrons,positrons,etc.

Crossproduct:or vectorproduct(denotedby
x B)of twotypicalvectorquantitiesA and
canbedefinedeitherasavectormutually
perpendicularto both_ andB withmagnitude
AB sin(A, B)or equivalentlyas

(AyBz - AzBy)I + (AzBx - AxBz)J

+(AxBy- AyBx) K

wherethesubscriptsdenotethecomponents
ofthevectors on the three orthogonal axes
denoted by the unit vectors I, J, K.

Culmination: The time at which a heavenly body
reaches the meridian of an observer. Upper

culmination occurs near zenith, lower culmina-
tion near nadir.

D

Day, sidereal: the period of one rotation of the

earth relative to inertial space (the stars),

23 h 56 m 04 s. 090 mean solar time.

Day, solar: the time between two successive

upper (or lower) culminations of the sun,

24 h 03 m 56 s. 556 sidereal time.

Declination: the arc of an hour circle (great
circles passing through the poles) intercepted

between the celestial equator and the object;

angular distance north or south of the celestial

equator.

Definitive orbit: an orbit that is defined in a

highly precise manner with due regard taken
for accurate constants and observational data,

and precision computational techniques including
perturbations.

Differential correction: a method for finding from
the observed minus computed (O - C) residuals

small corrections which, when applied to the
elements or constants, will reduce the devia-

tions from the observed motion to a minimum.

Dip: the angular distance between the true hori-

zontal and the observed horizon for an observer

above ground level.

Direct motion: the term applied to eastward or

counterclockwise motion of a planet or other

object as seen from the North Pole (i. e. , in

the direction of increasing right ascension).
Thus, it is motion on an orbit in which i < 90

degrees.

Diurnal: daily.

Diurnal motion: the apparent revolution of the

heavenly bodies around the earth.

Dot product: or scalar product (denoted by A • B)

of two typical vector quantities A and B can be

defined as AB cos (A, B) or equivalently as

AxB + A B +A B where the subscripts
x y y z z

denote the components of the vectors on three

orthogonal axes.

Drag: the force occasioned by the passage of an

object through a resistive medium acting in a
direction opposite to that of the object' s motion
relative to the medium.

Drag coefficient: the total drag force acting on an

object divided by one-half the local atmospheric

density, the projected frontal area of the object.

and the square of the magnitude of the velocity
of the object relative to the resistive medium.

Drift, anomalistic: the variation or drift of a

frequency source (e.g., a crystal oscillator)

such that the frequency changes due to a variety
of causes (e.g., temperature variation, com-

ponent aging, etc. ), none of which can be pre-
dicted in advance or completely controlled.

E
Eccentric anomaly: an angle at the center of an

ellipse between the line of apsides and the

radius of the auxiliary circle (which has radius

equal to semimajor axis of ellipse and center

at center of ellipse) through a point that has

the same x-coordinate as a given point on the
ellipse.

Eccentricity: the ratio of the radius vector through

a point on a conic to the distance from the point
to the directrix.

Eclipse: a name applied to cases where a non-

luminous body passes into the shadow of another;

eclipse of the sun means the interposition of the
moon' s disc between the observer and the sun.

Ecliptic: the great circle formed by the intersec-

• tion of the orbital plane of the earth (the ecliptic

plane) and the celestial sphere.
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Ecliptic coordinate system: axes with the ecliptic

as the fundamental plane and with spherical co-

ordinates: celestial longitude and latitude.

Elements of orbit: any six independent constants

defining the orbit, e. g., (i) orientation ele-

ments: _ longitude of ascending node', i inclina-

tion of orbit plane; _0argument of perifocus;

(2) dimensional elements: e eccentricity; a

semimajor axis; (3) time element: T time of

perifocus passage.

Elevation, angle of:. the angle between the i_ertial

velocity vector r" and the local borizontal, i.e. ,

the plane normal to _passing through the ve-
hicle.

Eliminant: a determinant that is formed when

n - i linear unknowns are eliminated from a

set of n equations. The elimination of x and y,

for example, from

alx + blY = c 1

a2x + b2Y = c 2

a3x + b3Y = c 3

yields the eliminant:

a 1 b 1 c 1

a 2 b 2 c 2 = 0

a 3 b 3 c 3

Elongation, angle of: the angle between the di-

rection to an object and to the center of the

coordinate system reckoned at the observer.

Energy integral: one of the integrals of two-body
motion expressing conservation of energy.

Entry angle: the angle between the velocity vector

of a space vehicle relative to a resistive medi-
um and the local horizontal.

Ephemeris (plural, ephemerdies): a table of cal-

culated coordinates of an orbject with equi-

distant dates as arguments.

Ephemeris time (ET): uniform or Newtonian

time, defined by mean frequency of rotation
of the earth around the sun for the year 1900.

Epoch: arbitrary instant of time for which the

elements of an orbit are valid (e. g., initial,

injection, or correction time).

Equator, celestial: the great circle in which the

plane of the terrestrial equator intersects the

celestial sphere.

Equator, terrestrial: the circle in which the

plane through the earth's center normal to

its axis of rotation (the equatorial plane) in-
tersects the earth's surface.

Equatorial bulge: the excess of the earth' s

equatorial diameter over the polar diameter
(i.e. , about 27 miles, 43 kin); oblateness.

Equatorial satellite: a satellite whose orbit

plane coincides with the earth' s equatorial

plane.

Equatorial system: rectangular axes referred to
the equator as the fundamental plane and

having spherical coordinates, right ascension
and declination,

Equilateral triangle solutions: a particular solu-

tion of the three-body problem in which an

object situated at one vertex of an equilateral

triangle formed with the sun and a planet has

a stable orbit. It was predicted by Lagrange

(1772) and amply confirmed in the case of

Jupiter. See Trojan asteroids.

Equinox, nutation of: arises from nutation of

equator.

Equinox of date: position of equinox at epoch

being used in discussion.

Equinox, precession of: arises from precession
of equator.

Equinox, true: equals equinox or vernal equinox,

q. v. , "true" being used to emphasize distinc-

tion from mean equinox.

Equinoxes: intersections of the equator and

ecliptic, the vernal equinox being the point

where the sun crosses the equator going from

south to north (descending node of earth's orbit).

Euler' s equation: a relation in a parabolic orbit

involving two radii vectors, their chord, and

the time interval between them; discovered

by Euler (1744).

Erection: a large perturbative term in the

moon' s longitude discovered by Hipparchus,

amounting to 1 ° 15' at maximum.

F

Feasibility orbit: an orbit that can be rapidly and

inexpensively computed on the basis of simpli-

fying assumptions (e. g., two-body motion,

circular orbit, three-body motion approxima-

ted by 2 two-body orbits, etc. ) and yields an

indication of the general feasibility of a system

based upon the orbit without having to carry

out a definitive orbit computation.

Free-molecule flow (or free-molecular flow):

flow regime in aerodynamics in which mole-

cules emitted from an object, as it passes

through a resistive medium, do not affect

the flow of oncoming molecules by scattering

interactions, i.e., the mean free path of the
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emitted molecules is much longer than a

characteristic linear dimension of an object.

G
Galactic system: a system based on the center-

line of the milky way.

Gaussian gravitational constant, Ks: factor of

proportionality in Kepler' s third law; the

numerical value depending on the units em-

ployed. See astronautical unit.

Geocentric: referred to the center of the earth

as origin.

Geocentric parallax: see parallax.

Geocentric subvehicle point: the point where the

radius vector from the geocenter to a space

vehicle intersects the spheroid.

Geodetic subvehicle point: the point where a

line through a space vehicle normal to the

spheroid intersects the spheroid.

Geoid: the mean sea-level figure of the earth.

Geoidal surface: the mean sea-level surface of

the earth; surface of gravitational equipotential.

Geometric meter: the standard meter.

Geopotential meter: a unit of length employed in

reckoning geopotential altitude.

Gravitational potential: at a point, the work re-

quired to remove unit mass from that point

to infinity.

Greenwich meridian: the zero meridian from which

geographical longitude is measured (passes

through the Greenwich Observatory, England).

Ground trace: a succession of subvehicle points

on earth or on any other celestial body.

Ground swath: a region around the ground trace,

the boundaries of which are specified by the

lateral distance from the ground trace.

Guidance and control system: a system that ac-

tively counteracts or overcomes the effects
of deviations (from nominal conditions) in

order to accomplish the given mission with
the desired degree of exactness. Navigational

inputs allow the guidance and control system
to sense these deviations.

Guidance law: the equations which are mechanized

in the guidance and control system.

Guidance law, explicit: the guidance computer in

the vehicle predicts and the vehicle is steered

along a trajectory which brings it to the de-
sired end conditions.

Guidance law, implicit: the vehicle follows a

nominal trajectory while the guidance system
is active.

H
Harmonics of the earth' s gravitational field: a

series representing the gravitational potential
of the earth whose terms form a harmonic

progression, i.e. , include powers of the re-

ciprocal of distance.

Helioeeontrie: referred to the center of the sun as

origin.

Hohmann orbit: an elliptic heliocentric trajectory

for interplanetary flight, having tangency to the
earth at one apsis and to another planetary

orbit (e.g., that of Venus or Mars) at the op-

posite apsis. More generally stands for any

such doubly tangent transfer ellipse.

Horizon, apparent: the horizon formed by the
horizontal plane through the position of the
observer.

Horizon, rational: the horizon formed by the

plane through the center of the earth parallel
to the observer's horizon.

Horizon coordinate system: a system of topo-

centric coordinates either spherical (azimuth

and altitude) or rectangular, having as

reference plane the celestial horizon, which

is perpendicular to the direction of gravity
at the observer.

Horizon scanner: an optical device that senses

the radiation discontinuity between a planet

or lunar surface and the stellar background
of space. It can be utilized to establish a

"vertical" reference based upon a "visual"
horizon (which differs from both the astro-

nomical and geodetic horizon).

Horizontal plane: that plane perpendicular to the

direction of gravity at any place.

Hour angle (LHA): angle between the observer's

meridian and the hour circle passing through
the object, a coordinate in the rotating equa-

tor system, positive toward west, 0 to 24 hr.

Hour circle: any one of the great circles that

pass through the celestial poles and, therefore,

are at right angles to the equator.

Inclination i: angle between orbit plane and

reference plane (e. g., the equator is the

reference plane for geocentric orbits and the
ecliptic for heliocentric orbits).

Inertial axes: axes that are not in accelerated

or rotational motion.

Injection: the addition of an "instantaneous" in-

cremental velocity vector to the satellite

velocity vector at a prescribed time and place
to establish a new orbit.
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Injectlon conditions: position and velocity of

rocket at the instant when the thrusting of

rocket motor ends and the ballistic portion of

the trajectory begins.

Intermediate orbit: an orbit tangent to the actual

(or disturbed) orbit, having the same coordi-

nates but not velocity at point of tangency.

Inversion: in this context is meant to be synony-

mous with the numerical solution of a set of

linear algebraic equations.

Ionosphere: the ionized portion of the atmos-

phere above about 60 km.

Isostatic equilibrium: a situation in which the
pressure under the earth' s surface is the

same regardless of whether it is measured

under a mountain, valley or ocean, i.e.,

lower density strata underlie mountains

while higher density strata underlie oceans.

J
Jacobi' s integral: an integral of the equations

of motion in a rotating coordinate system

which relates the square of the velocity and

the coordinates of an infinitesimal body re-

ferred to the rotating coordinate system. The

constant of integration associated with Jacobi's

integral is known as Jacobi's constant.

Julian date: the number of mean solar days that

have elapsed since midnight, January 1, 4713

BC; e. g., the Julian date of January 1, 1960

is 2,436,934, a_d of February I, i965 is

2,438,792, etc.

K

Kepler' s planetary laws: (1) every planet moves

in an ellipse about the sun with the sun at one

focus; (2) every planet moves in such a way

that its radius vector sweeps over equal areas

in equai intervaIs of time; (3) the squares of

the periods of revolution of two planets are to
each other as the cubes of their mean distances

from the sun.

-1

Ke rain: the characteristic time for geocentric

orbits, i.e. , the time required by hypothetical
satellites to move 1 radian in a circular orbit

of radius a e (equatorial earth' s radius); equal

to 13,447,052 rain.

-1
K day: the characteristic time for heliocentric

s

orbits, i.e., the time required for a planet at
1 astronomical unit to move 1 radian (or 1 a.u. )

along its orbit; equal to 58. 132,440, 87 days.

L
Lagrangian solutions: particular solutions of the

three-body problem in which an infinitesimal

object moves under the attraction of two finite

bodies (e. g., the sun and Jupiter) which re-
volve in circles around their center of mass

and in which the distances from the infinitesi-

mal object to the finite bodies remain constant.

See also equilateral triangle solutions and

synodic satellites, i.e., the so-called straight
line solutions.

Lambert' s equation: an equation of the 8th degree

expressing the curvature of the apparent path

of a body moving around the sun, as seen from

the earth: discovered by Lambert (1771).

Latitude, astronomieah the angle between the

direction of gravity through a point and the

equatorial plane.

Latitude, celestial: the angular distance of an

object north (+) or south (-) of the ecliptic

plane; a coordinate in the ecliptic system.

Latitude, geocentric: the angle between the

equatorial plane and a straight line from the
observer to the center of the earth. It differs

from astronomical and geodetic latitudes be-

cause of the oblateness of the earth, 0 ° to 90 °
north or south.

Latitude, geodetic (or geographic latitude): the

angle between the plane of the equator and a

normal to a reference spheroid. Geodetic

and astronomicaI latitudes differ only because

of local deviations in the direction of gravity,
0 ° to 90 ° north or south.

Least squares inversion: a solution of a set of

overdetermined linear equations such that

the sum of the squares of the residuals is a
minimum.

Legendre polynomials: the coefficients P (c)n

in the expansion (1 - 2ch + h2) -1/2 =

Px(c) hnwhere P0(c) = 1, Pl(C) =

n=0

1/2 (3c 2 - 1), P3(c) = 1/2 (5c 3 - 3c), or, in

general, (n + 1) Pn + l(c) - (2n + 1)CPn(C)

+ nPn- l(c) = 0.

Libration: (I) apparent or optical and physical

tilting and side-to-side movements of the moon

that render 18 percent of its surface alternately

visible and invisible, (2) long-period orbital

motions of the Trojan asteroids around the

equilateral triangle points of the three-body

Lagrangian solutions, (3) periodic perturba-
tire oscillations in orbital elements.
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Lift: theforcearisingfromthepassageof ave-
hiclethrougharesistivemediumwhentheve-
hiclepresentsanasymmetricalformor orien-
tation;whichforceactsin adirectionnormal
to theobject,s motionrelativeto themedium.

Limb: theedgeofthevisiblediskofthesun,
moon,planet,etc.

Lineof apsides:a lineconnectingthenearto
thefar apsis, i.e. , definesthemajoror
transverseaxis.

Lineofnodes:the intersectionof areference
planeandtheorbit plane.

Line-of-sight:theapparentor observeddirection
of anobject.

Longitude,celestial: theangulardistance
measuredalongtheeclipticfromthevernal
equinoxeastwardto thegreatcircle passing
throughtheobjectandnormalto theecliptic.

Longitude,ephemeris:analogoustoordinary
geographiclongitude,but referredto the
ephemerismeridian,ratherthanto the
Meridianof Greenwich.

Longitude,geocentric:theangulardistance
fromthefootof theGreenwichmeridian,
measuredalongtheequator,eastor west,
to thefootofthemeridianthroughtheplace.

Longitudeofascendingnode:theangulardis-
tancefromthevernalequinoxmeasuredeast-
wardin thefundamentalplane(eclipticor
equator)to thepointofintersectionwiththe
orbit planeat thepointthattheobjectcrosses
from southto north.

Longitudeofperifocus:sumof theanglein the
fundamentalplanebetweenthevernalequinox
andthelineof nodesandtheanglein the
orbit planebetweentheline ofnodesandthe
line ofapsides,measuredin thedirection
ofmotion.

Lunarequation:a factorrequiredfor reducing
observationstothebarycenteroftheearth
moonsystem.

Lunartheory: theanalyticaltheoryofthemotion
of themoon.Thelunartheoriesof Delavnay,
Hansen,andHill-Brownareusedmostfre-
quentlytoday.

Lunarunit (LU): themeandistancefromthecenter
of theearthto thecenterof afictitiousunper-
turbedmoonhavingthemassandsiderealperiod
of themoon.Onelunarunitis approximately
equalto 384,747kmor 239,122statutemiles.

Lunicentric:referredto themoon'scenteras
origin; selenocentric.

M
Mach number: the ratio of the speed of a vehicle

to the local speed of sound.

Macrometeorites: meteorites that are sufficiently

massive to become fallen meteorites (and

whose origin appears to be related to that of

minor planets).

Magnetic storms: extensive disturbances in the

earth' s magnetic field.

Magnitude, stellar: a measure of the brightness

of a star. A difference of five magnitudes

represents a factor of 100 in brightness.

Mean anomaly: the angle through which an object
would move at the uniform average angular

speed n, measured frompe_ifocus: M = t_/_--_ - I

Va _

Mean center of moon (MCP): the point on the

lunar surface intersected by the lunar radius

that is directed toward the earth's center

when the moon is at the mean ascending node

and when the node coincides with the mean

perigee or the mean apogee. The MCP is a

specified distance from the crater MSst[ng A
_ the Sinus Medii.

Mean distance: the semimajor axis (it can be con-
sidered as an historical term).

Mean equinox of date: a fictitious equinox whose

position is that of the vernal equinox at a
particular date with the effect of nutation re-
moved.

Mean free path: the path of a molecule when mol-

ecules are assumed to be smooth, rigid spheres

with no external field of force acting on them_
each molecule travels freely on a straight line

between impacts with other molecules. The
distance traversed between two successive im-

pacts is called the free path and the average
value of this distance the mean free path.

Mean solar day: the elapsed time between suc-
cessive passage of the mean fictitious sun
across the observer's meridian, 86,400 mean

solar sec, the mean fictitious sun being a

fictitious sun that moves along the celestial

equator with the mean speed with which the

true sun apparently moves along the ecliptic

throughout the year.

Meridian: (1) Terrestrial meridians: great

circles passing through North and South Poles,

e. g., the observer' s local meridian passes
through his local zenith and the North and

South Poles. (2) Celestial meridian: a great

circle on the celestial sphere in the plane of
the observer' s terrestrial meridian.

Meridian, ephemeris: the geographical meridian

which lies east of Greenwich by the amount
1. 002738 times the difference (ET-UT).

Meridian passage: also called "transit" or

"culmination" of a celestial object is marked

by its crossing an observer' s meridian.
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Mesometeorites: intermediate meteorites

having characteristic dimension of the order
of a fraction of an inch that are stopped by
the atmosphere, consumed, and are seen as
common "meteors. " The origin of these
bodies appears to be related to that of comets

Meteor swarms: a large collection of mesome-
teorites (probably the remains of an "old"
comet) that enters the earth' s atmosphere
and is seen as a swarm of meteors. The

term is often applied to the actual collection
of mesometeorites on heliocentric orbits in

space.

Micrometeorites: very small meteorites (having
a characteristic dimension of a few microns)

that are stopped by the atmosphere without
being consumed in flight or without producing
luminous phenomena visible at the earth' s
surface.

Minor planets (or asteroids): small planets
revolving about the sun, estimated to number
more than 30,000, with diameters of more
than 1 mile. The largest, Ceres, has a
diameter of 488 miles.

Molecular scale temperature: the actual tempera-
ture of the atmosphere at any given height
multiplied by the ratio of the mean molecular
weight of the atmosphere at sea level to the
mean molecuIar weight of the atmosphere at
the given height.

Month, nodal: the time for one revolution of the
moon with respect to either node.

Month, sidereal: the time between two successive
arrivals of the moon at a given apparent place
on the celestial sphere as indicated by the
stars.

Month, synodic: the time for one revolution of
the moon with respect to the apparent place

of the sun, e. g., the time between conjunc-
tions.

Moon's celestial equator: a great circle on the
celestial sphere in the plane of the moon's
equator, i.e., in a plane perpendicular to
the moon's axis of rotation.

Moon's orbital plane (MOP): the instantaneous
orbital plane of the moon around the earth,

defined by the moon's geocentric radius and
velocity vectors.

N
Nadir: the downward plumb-bob direction,or

the point where the downward extension of the
direction of a plumb-bob intersects the celes-
tial sphere.

Navigation: the process of determining the po-
sition and velocity of a submarine, ship, air-
plane, or space vehicle by making observa-

tions from the vehicle of objects in the en-
vironment of the vehicle.

n-body problem: concerned with the gravitational

interactions of masses m i, mj, i, j = 1, 2 .....

which are assumed homogeneous in spherical
layers, under the Newtonian law. If n = 2, one
has a two-body problem, while n = 3 is known
as the three-body problem.

Newton, s laws: Law of gravitation: Every par-
ticle of matter in the universe attracts every
other particle with a force varying directly as
the product of their masses and inversely as the
square of the distance between them. Laws
of motion: (1) Every particle continues in its
state of rest, or of uniform motion in a
straight line, unless it is compelled to change
that state by a force impressed upon it.
(2) The rate of change of momentum is pro-
portional to the force impressed, and takes
place in the direction of the straight line in
which the force acts. (3) To every action
there is an equal and opposite reaction; or the
mutual actions of two bodies are always equal

and oppositely directed.

Nodal passage, time of: the time Tf2 when an ob-

ject passes through the node from the southern
hemisphere to the northern hemisphere.

Node: the points of intersection of the great circle
on the celestial sphere cut by the orbit plane and
a reference plane (e. g. , the ecliptic or equator
reference plane).

Node, ascending: the node in the reference plane
through which the body passes from South to
No'rth.

Node, descending: the node in the reference
plane through which the body passes from North
to South.

Node, longitude of ascending: see longitude of as-
cending node.

Nominal orbit: the true or ideal orbit in which

space vehicle is expected to travel.

Normal places: curve formed, when several ob-
servations are available very close together

in time, by smoothing observed coordinates.

Numerical differentiation: a process that allows
for the numerical evaluation of the derivative

of quantity, given tabular values of the quantity.

Numerical integration: a process that allows for
the numerical evaluation of a definite integral.

Nutation: short period terms in the precession
arising from the obliquity, the eccentricity,
and the inclination of the moon's orbit and the

regression of its nodes (approximately a 19-
year period).

0
Obliquity of the ecliptic: the inclination of the

ecliptic to the celestial equator; the angie of
approximately 23 ° 27' between the earth's or-
bital plane and its equator.
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Occultation: the interruption of the light from

one celestial body by the intervention of another.

Opposition: the position of an object when its ce-

lestial longitude is 180 ° from sun, i.e. , op-

posite to sun. (Configuration possible only

with moon and superior planets. )

Orientation angles: the classical orientation ele-

ments, i.e., the inclination, longitude of the

ascending node, and longitude of perifocus.

Osculating orbit: an orbit tangent to the actual or

disturbed trajectory, having the same coordinates

and velocity at that instant.

P

Parallactic angle: the angle between the hour

circle of and the vertical circle through a body.

Parallaotic inequality: a secondary effect on the

solar perturbations in the moon's longitude due

to the ellipticity of the earth's orbit.

Parallax: (1) Geocentric parallax: the angle at the

object subtended by the earth's equatorial radius;

applied to objects in the solar system. (2)

Heliocentric parallax: the angle at a star, etc. ,

subtended by the radius of the earth's orbit;

applied to objects outside the solar system.

Pericynthion: the point on a selenocentric orbit
nearest the moon's center.

Perifocus: the point on an orbit nearest the central
force.

Perigee: the point on a geocentric orbit nearest
the earth's center.

Perihelion: the point on a heliocentric orbit nearest
the sun.

Period: the time required for one complete circuit
of the orbit.

Period, anomalistic: interval of time from one

perifocus passage to the next.

Period, nodal (also draconic): interval of time

from one nodal crossing to the next.

Period, sidereal: the time required for the pro-

jection of a planet or other body to make a com-
plete circuit of the celestial sphere. This is

the true period.

Period, synodic: the time between successive

oppositions of a superior planet or successive

inferior conjunctions of an inferior planet.

Perturbations: deviations from exact reference

motion caused by the gravitational attractions
of other bodies or other forces.

General perturbations: A method of calculating
the perturbative effects by expanding and

integrating in series.

Special perturbations: methods of deriving the

disturbed orbit by numerically integrating

the rectangular coordinates or the elements.

Piecewise continuous: a function that can be di-

vided into a finite number of pieces such that
the function is continuous on the interior of

each piece and such that the function approaches
a finite limit at the point of connection of one

piece with another. In the context of the tem-

perature profile discussion the term is used in

a more restricted sense to imply a function
that is divided into a finite number or series

of connected linear pieces (straight line seg-
ments).

Planetocentric: referred to the center of a planet

as dynamical center or origin of coordinates.

Planets: bodies in the solar system which move

in essentially elliptical paths around the sun
(see Kepler's laws).

Inferior planets:

Mercury
Venus

Superior planets:

Mars
Asteroids

Jupiter
Saturn

Uranus

Neptune
Pluto

Inner, or terrestrial,

planets:

Mercury
Venus

Earth

Mars

Asteroids, or minor

planets.

Outerj or major, planets:

Jupiter
Saturn

Uranus

Neptune
Pluto

Plasma: a collection of positive and negative ions

that has no overall or gross charge.

Polar satellite: a satellite that passes over the

north and south poles of the earth, i.e., that

has an inclination of 90 ° with respect to the

earth's equator.

Polar distance, ecliptic: complement of the ce-
lestial latitude.

Polar distance, north: complement of the dec-
lination.

Poles, celestial: the points in which the axis

of rotation intersects the celestial sphere.

Poles, ecliptic: the points in which the normal

to the ecliptic through the origin intersects

the celestial sphere.
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Poles,galactic: thepointsin whichthefunda-
mentalgalacticaxisintersectsthecelestial
sphere. Thenorthgalacticpoleis at 12h44m
rightascensionand+27° declination.

Position,apparent:coordinatesofa celestial
bodyasseenbyanobserverat thecenterof
theearthreferredto a coordinatesystemde-
finedbytheinstantaneousequator,ecliptic,
andequinox.Thetabulatedpositionsofthe
sun,moon,andplanetsin theAmerican
EphemerisandNauticalAlmanacareusually
apparentpositions.

Position,mean:coordinatesofa celestialbody
referredto a coordinatesystemdefinedbythe
meanequator,eclipticandequinoxof date.
This means that the periodic effects of nutation

have been neglected.

Position, true: coordinates of a celestial body if

corrections for planetary aberration are ap-

plied to the apparent position. A sequence of

true positions as a function of time is known

as a geometric ephemeris.

Potential function: see gravitational potential.

Poynting-Robertson effect: the gradual decrease

in the orbital semimajor axis and eccentricity

of a micrometeorite caused by the re-emission

of radiant energy from the micrometeorite.

The theory was first announced by Poynting and

later improved and brought into conformity with
the theory of relativity by Robertson.

Precession of the equinoxes: the slow, 26,000-

year period westward motion of the equinoxes

(and equator) along the ecliptic, arising from

solar and lunar perturbations on the earth's

equatorial bulge, which cause the earth's axis

to precess.

Predicting a satellite's position: the six elements

are the same in number as the three coordinates

of position and the three components of velocity

required to specify the launching conditions

completely.

Primary: the body having the strongest gravita-
tional field (most ponderous mass) in a system

of bodies revolving about their common center

of gravity. (Sun is the solar system's primary,

earth is earth-moon system primary, etc.)

Prime meridian: the meridian defining 0 ° and

180 ° E or 180 ° W longitude. On earth the

Greenwich meridian is the prime meridian.

R
Radiation pressure: the pressure acting on a sur-

face exposed to incident electromagnetic radia-
tion caused by the momentum transferred to the

surface by the absorption and reflection of the
radiation.

Ratios of the triangles: in the orbit determination

methods of Gauss, Olbers, et al., the ratios

of the triangles formed by the radii and the

chords are assumed in a first approximation

to be ratios of the sectors, which are the ratios

of the corresponding time intervals by Kepler's
second law.

Rectilinear orbit: a trajectory for which pert-

focus distance is zero and eccentricity is one.

Red shift, gravitational: an effect predicted by the

General Theory of Relativity in which the fre-

quency of light emitted by atoms in stellar atmo-

spheres is decreased by a factor proportional

to the (mass/radius) quotient of the star: con-

firmed observationally by the spectra of white
dwarfs.

Re-entry: portion of a trajectory in the atmos-

phere of a planet; in the case of the earth it is

usually taken as the portion below 400,000 ft
or 122 km.

Re-entry corridor: all possible re-entry trajec-

tories which do not produce excessive aero-

dynamic heating or deceleration.

Reduction to orbit: quantity added to celestial

heliocentric longitude to give true longitude,

q.v.

Reference ellipsoid (or spheroid): oblate spheroid

closely approximating the geoid.

Reference orbit: an orbit, usually but not ex-

clusively the best two-body orbit available,

on the basis of which the perturbations are

computed.

Refractive index (of a medium): the ratio of the

speed of light in a vacuum to that in the medium,

hence it is a measure of how greatly electro-

magnetic radiation rays are bent during their

transit through a medium such as the earth's

atmosphere.

Regression of the moon' s nodes: the movement

of the nodes of the moon' s orbit westward

along the ecliptic, due to solar perturbations,

with period m 19 years.

Relativity effects: effects on a space vehicle tra-

jectory and on time measurement arising by

use of Einstein' s special theory of relativity or

of Einstein' s general theory of relativity instead

of the customary Newtonian mechanics for de-

termining the trajectory. The fundamentals of

these theories of relativity are discussed in

Chapter IV of the Lunar Flight Handbook. Rela-

tivity effects are small in the weak gravitational

field of the solar system if the space vehicle

velocity is small compared to the speed of light.

There are many such effects, the most prominent

of which are: the time dilation predicted from

the Lorentz transforrrmtion of special relativity;

the time dilation, secular advance of perigee,

and red-shift of spectral lines predicted by

general relativity.
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Rendezvous:theapproachandcontactof twove-
hiclesinspace.

Representation: the computation of the position

of a space vehicle given the orbital elements

and the time.

Residuals (O - C): differences between the ob-

served and computed coordinates in the sense

observed minus computed.

Residuals (O - 1): differences between the pre-

computed ideal observational data and the

actual observed data on, for example, an

interplanetary voyage.

Restricted n-body problem: the motion of n

masses under their mutual gravitational at-

traction, but with one of the n irmsses having

negligible mass and hence not influnencing the

motion of the other (n - l) masses. This

term is usually applied to n = 3 (see also n-

body problem).

Retrograde motion: westward or clockwise motion
as seen from the North Pole, i.e. , motion in

an orbit in which _ > 90 degrees (opposite earth's
rotation).

Retrorocket: a rocket attached to a space vehicle

whose thrust is directed in a general direction

against the inertial velocity of the space ve-
hicle.

Reynolds number: the ratio of inertial forces to

viscous forces--it is proportional to the Mach

number, vehicle diameter, and the density,

or, in equivalent terms, proportional to the

diameter of the space vehicle in mean free

paths and the vehicle speed measured in terms

of the average thermal speeds of gas mole-

cules that constitute the oncoming flow.

Right ascension: angular position of an object

(e.g., star) measured eastward along the

celestial equator from the vernal equinox to
the great circle passing through the north

celestial pole and the star (hour circle). Right

ascension is often expressed in hours, minutes,

and seconds (1 h = 15°).

$
Scale height: the distance in which an isothermal

atmosphere decreases in density from 1 to

1/e.

Secular terms: expressions for perturbations that

are proportional to the time.

Selenocentric: referred to the center of the moon;

lunicentr ic.

Selenocentric equatorial coordinates: a right-

handed coordinate system centered at the moon

with its three axes defined by the vernal equinox,

north celestial pole (of the earth), and a direction

perpendicular to these two, i.e., an equatorial

coordinate system translated to the moon.

Selenographic coordinates: coordinates that are

rigidly attached to the moon (as geographic
coordinates are attached to the earth) defined

by the moon' s equator and prime meridian.
See mean center of moon.

Semimajor axis: the distance from the center of

an ellipse to an apsis; one-half the longest diam-

eter; one of the orbital elements.

Semiminor axis: one-half the shortest diameter

of an ellipse.

Semiparameter: semilatus rectum; the perpen-
dicular distance from the conic to the semi-

major axis through either focus (not to be con-

fused with the generic term "parameters").

Setting circles: a graduated scale that can be read

visually and indicates the direction (e. g., alti-
tude and azimuth or right ascension and de-

clination} in which a telescope is pointed. Ordi-

narily they are employed to set or point a con-

ventional astronomical telescope in the proper

direction to make a given observation.

Sidereal period of a planet: see period, sidereal.

Sidereal time: the hour angle of the vernal equinox.

(See Chapter II for conversion of sidereal time
to mean solar time).

Sidereal year: time required by the earth to com-

plete one revolution of its orbit; equal to

365. 25636 mean solar days.

Slip flow: a flow regime in aerodynamics in which
there is some departure from continuum flow

and the layer of compressible fluid immediately

adjacent to the surface of an object is no longer

at rest but has a finite tangential "slipping"

velocity.

Solar flares: short-lived areas of brilliance

(covering areas of I0 million square miles or

so) on the sun' s chromosphere that are as-

sociated with other solar activity. Often ac-

companied by bursts of emitted charged cor-

puscles and electromagnetic radiation. They

reach several times normal brightness within

one or two minutes and then subside slowly
over 15 to 30 minutes.

Solar parallax: the ratio of the earth' s equatorial

radius to its mean distance from the sun.

Solar time, mean: hour angle of fictitious mean

sun increased by 12 hours. (The fictitious

mean sun is a fictitious sun moving on the

celestial equator with a mean motion of the real
sun.) See pages 474 to 476, American Ephemeris
and Nautical Almanac for conversion of mean

solar time to sidereal time.

Solar wind: those low energy particles, i. e,,

corpuscular radiation (electrons and protons)

emanating from the sun. Typical flux rates

are 108 to 10 l0 particles per cm 2 per second,

and typical energies are 1000 to 100,000

electron volts for the protons and a few elec-
tron volts for the electrons.
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Solstices: the two times a year when the sun's
declination is greatest north or south (about

June 22 and December 22).

Space range system: a system or network of
observation stations, together with their

associated communication links and compu-

tational facilities, that are utilized to observe

and track space vehicles, e.g., the Pacific

Missile Range, the National Space Surveillance

System, etc.

Specular reflection: characterized by the relation

that the angle of incidence equals the angle of

reflection, in contrast to diffuse reflection.

Sphere, celestial: an imaginary reference sphere;
generally considered to be of infinite radius,

and having its visible representation in the sky.

Spheroid: an oblate ellipsoid which closely approx-

imates the mean sea-level figure of the earth

or geoid.

Stability of a point or orbit: a point or orbit is
stable if the space vehicle will remain near

the point or orbit if given a small displace-

ment and velocity. The point or orbit is un-
stable if the space vehicle will depart from it

rapidly.

Standard atmosphere: a table of atmospheric

density as a function of altitude which is

accepted as a standard and used as a model

to portray a typical average atmospheric

density variation.

Standard deviation: the square root of the arith-

metic mean of the squares of the deviations

from the mean; also called root mean square

error and sigma deviation.

Stationary points: points in the apparent path of

a planet, etc. , against the star background

where the object appears to stand still because

relative to the observer it is moving only in

the line of sight. Such a point occurs when a

planet changes its apparent motion from direct

to retrograde and vice-versa.

Station error: small, usually negligible, dif-

ferences between the astronomical and geodetic

latitudes, due to certain anomalies (such as a

mountain) in the local gravitational field.

Stratosphere: a region in which the temperature

remains constant from about 18 km up to a
height of 30 to 35 km.

Surface-circular satellite: a hypothetical satellite

on a circular orbit about the earth having a

semimajor axis equal to the earth' s equatorial
radius. Hence, such a satellite would "skim
the surface of the earth" as it revolved on its

orbit.

Synodic satellite: a hypothetical satellite, situated

0.84 of the distance to the moon on a line join-

ing the centers of the earth and moon and having
the same period of revolution as the moon, ac-

cording to the Lagrangian "straight line solu-

tion" of the three-body problem.

T
Terminator: the boundary between the illuminated

and dark sides of a planet or satellite. Usually

one distinguishes between a morning and an
evening terminator.

Three-body problem: the problem of integrating
the equations of motion of three bodies (e. g.,

sun-moon-earth) moving under their mutual

gravitational attractions: directly soluble

only in particular cases. See Lagrangian
solutions.

Thrust: the force exerted on a vehicle, by the
discharge of a gas or propellant, in accordance

with the conservation of linear momentum.

Time, ephemeris: time reckoning based upon

"constant" frequency rather than frequency
of earth's rotation. The current difference

between ephemeris and universal time is
about 35 seconds.

Time dilation: the apparent slowing-down of

moving clocks. This effect arises from the

special and general theory of relativity.

Time of perifocal passage: the time when a space

vehicle traveling upon an orbit passes by the
nearer apsis or perifocal point.

Topocentric: referred to the position of the ob-

server on the surface of the earth, as origin.

Topocentric parallax: the difference between the

geocentric and topocentric positions of a
satellite.

Topocentric equatorial coordinates: a right-

handed coordinate system centered at the ob-

server with its three axes defined by the vernal
equinox, north celestial pole, and a direction

perpendicular to these two, i.e., an equatorial
coordinate system translated to the topos.

Tracking: the process of determining the posi-

tion and velocity of a celestial body by making
observations from earth by optical or electro-

magnetic means.

Trajectory sensitivities: the partial derivatives

of dependent trajectory variables with respect

to independent trajectory variables.

Transitional flow: a flow regime in aerodynamics

between the free-molecule flow and slip-flow

regimes in which the molecules emitted from

the surface of an object affect the flow of on-
coming molecules, i.e., in which the mean

free path of the emitted molecules becomes

comparable to a characteristic linear dimension

of an object.

Transearthtrajectory: trajectory from the vi-

cinity of the moon to the vicinity of the earth.

Translunar trajectory: trajectory from the vi-

cinity of the earth to the vicinity of the moon.
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Transverse axis: the distance between the apsides

--identical to the semimajor axis for elliptical
orbits.

Triaxial ellipsoid: a solid aspherical figure which

when cut or sectioned in three (orthogonal,

normal or mutually perpendicular) directions
exhibits three elliptical cross sections of dif-

fering semimajor axes and eccentricities.

Tropopause: the height (varying from about 9 km

over the poles to 18 km over the equator) where

the gradual decrease in temperature with ele-

vation above sea level ceases.

True anomaly: the angle about the focus between

the perifocus and the radius vector in the

direction of the motion.

True equinox of date: the actual position of the

equinox including both precession and nutation.

Twenty-four-hour satellite: a satellite whose

orbital period is approximately 24 hr. If

such a satellite is on circular equatorial orbit,

then it will theoretically remain fixed or

"stationary" relative to the rotating earth.

Two-body orbit: the motion of a body of negligible
mass around a center of attraction.

U
Umbra: the dark central portion of the shadow

of a large body such as the earth or moon

(used in connection with eclipses). The outer,

less dark shadow is known as the penumbra.

Unit vector: a vector whose magnitude or length

is unity--utilized to define directions in space.

Universal time (UT): mean solar time referred

to the meridian of Greenwich, slightly non-

uniform owing to the irregular rotation of the
earth.

V
Van Allen radiation belt: two toroidal-

shaped zones or belts of charged particles

roughly situated in the plane of earth' s equator.
The inner belt commences at about one-fifth

on an earth' s radius above the equator and'
extends out to a little less than one earth' s

radius. The outer belt is located at about

two-and one-half earth radii from the earth

at the equator and is about one-earth radius

thick. Actually the outer belt has a cross

section that is shaped somewhat like a banana

and extends north and south of the equatorial

plane two earth radii. The northern and
southern extremes of the belt' s cross section

(at about 45 degrees latitude) approach the
earth one-half of an earth radius closer than

at the equator.

Variant orbits: computed orbits in which one of

the initial conditions (or parameters) is varied

slightly from those of the nominal trajectory--
such orbits are utilized to compute numerical

partial derivatives or to determine the effects
of errors in launch conditions.

Variation of latitude: small periodic changes in

the position of the earth, s poles due to a

"wobbling" of the axis of rotation about the

geometrical axis (the shortest diameter) of
the earth.

Vector component: the projection of a vector on

a given axis in space, e.g., if it is the X-

axis then the component of the vector A on

this axis is denoted by A x.

Vector equation: an equation, whose terms in-
clude vectors, that can be resolved into

'-" -/3 r
component equations; e.g., r -

r

actually represents the three component

equations:

= -px/r 3

j) -py/r 3

= -pz/r 3

where i_ has been replaced by its three com-

ponents _, _, and _ and r by its three corn-

ponents x, y, and z.

Velocity, circular: the magnitude of the velocity
required of a body at a given point in a gravita-

tional field which will result in the body fol-
lowing a circular orbital path about the center
of the field.

Velocity, escape (also parabolic velocity): the

minimum magnitude of the velocity required

of a body at a given point in a gravitational

field which wilt permit the body to escape from
the field.

Velocity, orbital: with respect to the planets,

usually the mean magnitude of the velocity in

orbit--computed as the total distance trageled

in one circuit divided by the period.

Vernal equinox: that point of intersection of the

ecliptic and celestial equator where the sun

crosses the equator from south to north in its

apparent annual motion along the ecliptic.

Vis viva integral: see energy integral.

Voice trajectory program (Volume of Influence
Calculated Envelopes): a patched conic lunar

mission trajectory program. It uses the ana-

lytical solutions of the two-body trajectories

to construct a complete trajectory from the

vicinity of the earth to the moon and back.

¥
Year: the orbital period of the earth. When un-

qualified, it refers to the equatorial or to the

calendar year, depending on its use.
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-Year,anomalistic:thetimeintervalbetween
successivepassesthroughperihelion=

365. 259,641,34 + 0.000,003,04 T days (T
denotes centuries since 1900).

Year, Besselian: a time reckoning in terms of

actual rather than calendar years.

Year, calendar: a variable year containing either

365 or 366 days.

Year, equatorial (also tropical or ordinary year,

not calendar year): interval between transits

of the sun through the moon equator 365. 242,

198, 79 - 0. 000,006, 14 T days.

Year, Julian: the year of the Julian calendar =

365.25 days.

Year, sidereal: the period of the earth relative

to the stars = 365. 256,360,42 + 0.0O0,000, ii

T days.

Z
Zedir technique: the use of two cameras on a

satellite whose optical axes are parallel, one

of which photographs the sky (zenith) while

the other simultaneously photographs the

ground (nadir). Upon development and meas-

urement, the photographs can be utilized to

find the attitude of the camera' s optical axis

at the time of photograph.

Zenith: the point where the upward extension of
the plumb-bob direction intersects the celestial

sphere.

REFERENCE

1° "Flight Performance Handbook for Orbital

Operations, " Appendix A, Space Technology
Laboratories, Inc. (Redondo Beach, Cali-

fornia), September 1961.
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1. THE ASTRONOMICAL UNIT AND THE SOLAR PARALLAX

The astronomical unit (A.U.), or the Earth's mean distance from the Sun, is connected with

the solar parallax (n o ) by the following relation (with Re= 6378.170 ± 0.020 km the equato-

rial radius of the Earth):

R e R e 206264."806247 Re 1315592000_+4000 (1)
1A.U. - sin no - no" sin 1" - no = fro"

Modern determinations of the solar parallax usually are included between the two values no =

87790 _+ 07001 (H. Spencer Jones, 1941) and n o = 8:'79835 ± 0700039 (E. Rabe, 1949). The

mean value of both determinations, no = 87 794 ± 07 002, has been accepted by C. W. Allen

(Ref. 1, p. 131) in his book on "Astrophysical Quantities" (1955). Exactly in the middle of

these two values are also the recently obtained data of radar echoes from Venus, which have a

considerably higher accuracy than previous determinations. Furthermore, agreement of the

different radio observatories is also very good, as shown in the following table:

Radio Observatory

Millstone (Lincoln

Lab., M.I.T.)

Goldstone (J.P.L.)

Jodrell Bank (U. of
Manchester)

Moorestown (R.C.A.)

U.S.S.R.

Author (Year) Ref. Radar Frequency

(MC/sec)

Pettengill, Price
et. al. (1961)

Victor, Stevens and
Muhlemann (1961)

Thomson et. al.

(1961)

Maron et. al. (1961)

Kotelnikov (1961)

440

2388

408

700

Astronomical Unit

(kin)

149 597850 ± 400

149 598845 ± 250

149601000 ± 5000

149 596 000

149 599 500 ± 800

Solar ParaLlax

(R,= 6378.170km

8.'794191

87794132

8. "79400 s

8." 794299

8." 794094

8." 79414 4

According to Newcomb and de Sitter the semimajor axis of the Earth's orbit around the Sun

is given by ae= 1.000000236 ± 0.000000004 A.U. (or approximately 35 km more than 1 A.U.).

For practical purposes both distances will be assumed equal to

ae = 149598700 ± 400 = 149598700 (1 5:2.7 x 10 -6 ) km (D

The corresponding solar parallax will be

R, 6378.170 ±0.020

% - a e sin 1" - 206264:'806247 149598700 ± 400 = 8.*79414 -+ 0."00005 (3)

Taking as best value for the light velocity the value determined by Froome (Ref. 4) in 1958:

c = 299792.5 -+ 0.1 = 299792.5 (1 ± 3.3x 10 -7 )km/sec (4)
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the light-time for unit distance (1 A.U.) is therefore

r = _ = 499.007 s ± 0.018 = 499.007 s (1 + 3.6 × 10 -s) sec
C

(5)

. DEFINITION OF TIME UNITS, MEAN ORBITAL MOTIONS,

AND ROTATIONAL ANGULAR VELOCITIES OF EARTH

AND MOON

There are three different times which are in use, namely, the Greenwich mean solar time or

universal time (U.T.), the Greenwich mean siderial time (G.M.S.T.) and the ephemeris time (E.T.)

or Newtonian time. Due to the variable rotation of the Earth, the mean solar time and the mean

siderial time do not have a constant rate. The observations are therefore functions of a variable

time, while the gravitational theories for the Sun and the planets use a uniform time. The ephe-

meris time, having a constant rate is defined by the orbital motion of the Earth as given by

Newcomb's Tables of the Sun. It is therefore necessary to apply corrections to our practical

determinations of time. In addition to the fluctuations and the tidal slowing down of the Earth's

rotation, the Moon also shows a real diminution in the angular mean motion which is not given by

Brown's lunar theory.

The correction to Newcomb's tabulated tropical mean longitude of the Sun (Ref. 5)

L o = 279 ° 41"48."04 + 129602768."13 TE+ 1."089 T_ (6)

is, according to H. Spencer Jones (Ref. 6),

AL o = + 1/'00 + 2."97 T + 1:'23 T 2 + 0.0748 /3 (7)

when the observation times are in U.T. The time T is in Julian centuries of 36525 a counted

from 1900 Jan. 0, 12 h U.T. (Greenwich mean noon) and B is the irregular fluctuation inthe Moorr's

mean longitude in arc seconds (time of observation again expressed in U.T.). The Sun's tropical

mean longitude, Lo, increases at the rate of 1"" in 86400/(0.9856473354 × 3600) = 24.349 48

sec, so that the correction to universal time, required to obtain ephemeris time is, according to

H. Clemence (Ref. 7),

A t ---tE- tv=24.34948 AL o =+ 24. s 349 + 7_318 T +29.s950 72+ 1.82134B (8)

H. Spencer Jones gives for the irregular fluctuation (Ref. 6)

B = (L, , ob..-- L, ,tabula,) + 10:'71 sin (140.°0 T + 240. ° 7) - 4.%5 - 12." 96 T - 5."22 T 2
(9)

The periodic term is Brown's empirical term in his lunar theory. Therefore the correction to the

Moon's mean longitude, as given by Brown's Tables of the Motion of the Moon(Ref. 8), is

AL, -= Lq ,obs.- Lt,tabular = + 4765 + 12f96 T + 5".'22 T 2 + B - 10."71 sin (140.°0 T+ 24007)

(10)

in order to obtain the actual mean longitude determined by observations in U.T. In the time
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interval A t = t E - t u the Moon's mean longitude increases by (n

= 0.549016 522 "/sec)

ALt = 0.549 At= 13.368AL o =+ 13:'37 + 39:'70 T + 16:'44 T 2 + B (11)

Therefore the correction to Brown's Tables is

AL, - AL t =- 8."72 - 26:'74 T- 11.'22 T 2 - 10:'71 sin (140. ° 0 T + 240.°7) (12)

when the observations are in ephemeris time. Brown's theory is now reduced to a gravitational

theory with the same measure of time as defined by Newcomb's Tables of the Sun. Clemence's

corrected value for the Moon's mean longitude (Ref. 7)

L, = 270 ° 26"2:'99 + 1732564379. _31 TE-4:'08 T_+ 0:'0068 T_ (13)

is used in the American Ephemeris and Nautical Almanac.

By means of equation (6) the tropical year, from mean equinox to mean equinox, thus has

the length

dE

2n 1296000"× 36525 = 365.aE242198 78 -0.d_000006138 T
Ptrop - /_o 129602768." 13 + 2:'178 T

= 365aE05 _E 48 _E 45. sE 9747 - 0. sE 5303 T = 31 556 925. 8E 9747 - 0. sE 5303 T (14)

= 13.176 396 5268 x 3600/86400=

In 1957 the ephemeris second has been adopted as the fundamental invariable unit of time,

and it is the fraction 1/31 556 925.9747 of the tropical year for 1900 Jan. 0, 12 h E.T. (Ref. 9)

The basis for all civil time-keeping is the universal time which is non-uniform. In practical

life, however, the difference between mean solar time and ephemeris time can be neglected be-

cause there is 1e _ (1 ± 10-8) aE. To define universal time Newcomb introduced a fictitious

mean Sun which moves with the same constant siderial rate, in the equator, as the mean siderial

motion is for the true Sun, affected by aberration (20:'50) in the ecliptic. According to Newcomb,

the right ascension of the fictitious mean Sun is (neglecting nutation in right ascension)

R E = 279°41"27:'54 + 129602768."13 T_ + 1:394 T_

= 18 h 38_'45_836 + 8640184?542 T + 0?0929 T2E (15)

Defining a point on the equator whose right ascension, measured from the mean equinox of date,

is

R u = 18h38m457 836+ 8640184. _ 542 Tu+ O? 0929 T_ , (16)

and where R e differs from R u by 0.002738 At (see equation 8), the Greenwich hour angle
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of thepointwhoseright ascension is R v [equal to universal time (U.T.)± 12h], in-

of the mean vernal
rot (R ll)

creased by the right ascension Ru, is the Greenwich hour angle, ror(_V),

equinox of date which is Greenwich mean siderial time, OcT • That is,

U.T. ± 12 h + R v = ror(Ru) + R U--rot (T) _ _ot (17)

Adding the East longitude to both sides gives the local mean time on the left side of the equation

and the local mean siderial time on the right side, because

= @C." + k eaot.

The time rate of the right ascension, given by differientation of equation (16), is

Ru = 8640184.542 + 0.1858 T v [sec/Jul. century]

= 129602768.13 + 2.788 T u ["/Jul.century]

= 3548.3304074 + 0.00007633 T U ["/d]

= 0.9856473354 + 2.1203 x 10 -s T v [°/d], (18)

Adding to this the time rate of the hour angle, ; = 360 °/d = 1296000 "'/d, the time rate of the

mean siderial time is then

_= 1299548.3304074 + 0.00007633 T [ "/d]

= 360.9856473354 + 2.1203×10 "s T [°/d]

= 15.04106863897 + 8.835 x lO'l°T ["/s or °/h]

= 1.002737909265 +0.5890× lO-l°T [d,/d or s,/s]

= 7.292 115 854 58 × 10 -s+ 4.283 x 10 -is T [rad/s] (19)

This motion is the result of the spin of the Earth and the motion of the vernal equinox (pre-

cession). Because the latter motion takes place in the ecliptic the equatorial component or the

general precession in right ascension, m, must be used here. The mean angular velocity of the

Earth's rotation is, therefore,

tim = _, - m (20)

It is very probable that Newcomb's value for the general precession in longitude, p, must be

increased by Ap = + 0:'80 per tropical century (see Part 9), thus

p = 5026.441 + 2.2229 T + 0.00026 T 2 [ "'/trop. century]

= 0.1376194 + 0.000060861 T + 0.712 x 10 "s T 2 ["/d]

= 0.00003822761 + 0.000000016906 T + 1.98× 10"12 T 2 [°/d] (21)
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Neglecting the correction in planetary precession (A>, = 0) the correction for the general pre-

cession in right ascension would be Am = Ap • cos _ = 0."80 x 0.917 = + 0:'73. Thus,

m = 4609.236 + 2.7945 T + 0.00012 T2 ["/trop. century]

= 0.1261967+ 0.000076511 T+ 0.33× 10-s T a [ "'/d']

= 0.00003505464 + 0.000000021 253 T + 0.92× 10-1_T 2 [°/d] (22)

The angular velocity of the Earth's rotation is, therefore,

_'/_ = 1 299 548.204 2107 - 0.000 000 18 T [ "'/d ]

= 360.9856122808 -0.0050x 10 -s T [°/d]

= 15.041 067 178 37-0.021x 10 -1° T["/s or °/h ]

= 1.002 737 811 891 - 0.0014 × 10-1°T [rot/d]

= 7.29211514646× 10-s-0.010x 10 -is T[rad/s] (23)

Using equations (19) and (23) the following periods are obtained:

1. Mean solar day (culmination period of the mean Sun)

1 e = 1.a* 002737909265 + 0.e* 589x 10 "1° T

=86636:,55536050 + 0._*0508896× 10 -4 T

=24 h*03m*56.% 555 360 50 + 0.% 050 8896x 10"4 T

= 1.r°t 002737811891 -0/°t 0014 xl0 -1° T

= (1 + 10-8)dz (24)

2. Mean siderial day or mean equinoctial day (culmination period of the vernal equinox)

la* = i d - 0.a002730433 586 - 0.d 587 × 10 -l° T

= 0.d 997269566414 - 0.a 587 × 10-1°T

= 86164:09053817 - O._ 05071681 10-4T

= 23h56_ 04: 090 53817 -0. _ 0507168 x 10 -4 T

= _= m -- 0 rot -I01 - -r-- = (1 - 0.000 000 097 108) r°t . 589 x 10 T

= 0r°t 999999902892- _ot 589x 10 -I° T (25)
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. Period of the Earth's rotation (culmination period of an equatorial star without proper motion)

6 m
1r°t = --_= 1 +--_-- = 1.a, 000000097108 + 0.a_ 589× 10 -1° T

= 86400.*,00839013 + 0.'*0508896 × 10 -4 T

= 1 a -0. a002730336743 +0. a0014 × 10 "1° T

= 1 a - 235._ 901094 60 + 0._ 00012096 × 10 .4 T

= 0.a997269663257 + 0.a0014× 10 -1° T

= 86164:09890540 + 0._ 0012096 × i0 -s T (26)

Because

or

1 a - 1 ao = 236:,55536050 + 0.°°0508896 x 10 -4 T

= 235:90946183 + 0._ 0507168 × i0 -4 T

I h- 1 h* =9._*856473 = _ 829561

the change of mean siderial time against mean solar time is 9._* 85647 in a mean solar hour and
9.* 829 56 in a mean siderial hour.

In order to apply Kepler's third law, the siderial mean angular motions of the Earth about

the Sun and the Moon about the Earth will be needed. Differentiation of equation (6) gives the

tropical mean motion of the Earth:

n_ (trop.) = Lo = 129602 768.13 + 2.178 T [ "'/Jul. century]

= 3548.3304074 + 0.00005963 T ["/d']

= 0.9856473354 + 1.6564× 10 s T [°/d] (27)

Subtracting from this the general precession in longitude (equation 21) yields the siderial mean

motion of the Earth:

n® (sid.)=/_o - P = 3548.1927880- 0.000001 23 T [ "'/d]

= 0.9856091078 -0.0342× I0 -s T [°/d]

= 0.041 067 046 16 - 0.1424 × 10-1°T [ "'/s]

= 1.9909865820 × 10 -r - 0.69037468 × 10 -16 T [rad/s] (28)

Differentiating equation (13) provides the tropical mean motion of the Moon:
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n, (trol_) = /_, = 1732 564 379.31 - 8.16 T + 0.0204 T 2 [ "'/Jul. century]

=47435.0274965 -2.234× 10 -4 T+ 0.559x 10-6T 2 ["/d]

= 13.1763965268 -6.206× 10 .8 T + 1.55 x 10-1°T 2 [°/d]

= 0.549016521950 -2.586x 10 .0 T +6.46x 10-12T 2 ["/s] (29)

and subtraction of the general precession in longitude, p, gives the siderial mean motion of the
Moon:

n, (sid.)=/_, -p = 47434.8898771-2.843× 10 -4T + 0.552× 10-6T 2 ["/d

= 13.1763582992 -7.897x 10 .8 T + 1.53x 10-I°T 2 [°/d]

= 0.549014929133 -3.290 x10 .8 T +6.38 x10-12T2["/s]

= 2.66169948773 x 10 -s -1.595 x 10-13T + 3.09 x 10-17T2[rad/s] (30)

Because the distance of the Earth to the Sun is now known more accurately than before, it

is possible to give the mean orbital velocity of the Earth about the Sun with high accuracy,
namely

ve = ao no = 29784.90 -+ 0.08 [m/s] (31)

There are two constants connected with this velocity. Taking e = 0.01675 for the orbital eccen-

tricity of the Earth the value for the constant of aberration will be

K = V@/C r rio
= = 20.'4956 ± 0."ooo7, (32)

X/l-e2 sin 1"" x/l-e2 sin 1""

and using the formula of de Sitter (Ref. 10) the geodetic precession, due to the special theory of

relativity, is

3 3
Pa = -_ (%/c) 2 no= n2- (K sin I"X/1- e2)2ne = 1.-9188 +_ 0:'0002 (33)

3. THE LUNAR DISTANCE AND THE LUNAR PARALLAX

The mean observed distance, _,of the Moon from the Earth is connected with the mean per-

turbed lunar parallax, n, , and the constant n a' of the sine of the perturbed lunar parallax by the

following relation:

1 1

R - sin n, - rr, sin i
(34)

Dividing both sides of the series development

1

= sin,r, +-6- sin 3 _ +...
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• •p

by sin 1"" yields (because rq = sin nI /sin 1 )

,, , 1 ,)3 ' i+ +...
rtt = n_ + _ (rq (sinl") 2 + .... rt_ _-

= n o × 1.000045885 = n_ + 0."157 (35)

Newer determination s are

nq" = 34227 54 % = 3422.70

3422.526 ± 0.009 3422.683 e 0.009

3422.419 ± 0.024 3422.576 ± 0.024

3422.493 3422.650

(E.W. Brown, Ref. 8)

(W. deSitter, Ref. 10)

(H. Jeffreys, Ref. 11, p. 193)

(Herrick, Baker, Ref. 12)

Recent determinations of the mean lunar distance, 7, , by means of radar echoes to the Moon are

in very close agreement (see Reference 13). This value is given by

7, = 384402.0 + 1.0 = 384402.0(1 ± 2.6 x 10 "6) km
(36)

thus

R o

384402.0 (1 ± 2.6 x 10 -6 )

6378.170 (1 ± 3.2 x 10 -6) = 60.26838 (1 -+ 5.8 x 10 -6) = 60.26838 -+ 0.00035
(37)

and

, sin rrf 206 264:" 806 247 3422. H 438 ± 0:" 020 (38)
no = _= (r, /R,) =

n, = 3422." 595 + O: •020 (39)

To obtain the semi-major axis, a, , it is necessary to add to the mean lunar distance the constant

part of the solar perturbations according to Brown's lunar theory. There is now

a 4 = 1.000907681 _ = 384750.9 + 1.0 km (40)

and the mean orbital velocity of the Moon about the Earth is

v, = a, n, = 1024.091 -+ 0.003 m/s (41)

4. MASS RATIOS OF THE SUN AND THE EARTH-MOON SYSTEM

Taking the already given values for a® , n® (sid.), and a I , n I (sid.) then Kepler's third law

gives

n_ a_=G(Mo+M_+M, ) = GM®(v +I)(I+K) (42)

n_ aa3 = G(M o+M I) = GM® (I+K) (43)
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with

Mo M,
_' Me+M, >> 1 ; K - M® << 1 (44)

Dividing the two equations yields

2 , a_ 3

\ v, t \_TJ

= 328898.6 (1 + 1.6 x 10 .5 ) = 328898.6 ± 5.2 (45)

This value is approximately in the middle between the value 329 390 obtained by S. Newcomb

(Ref. 14), adopted by Am. Ephemeris, and the value 328 446 + 43 determined by E. Rabe (Ref. 1 5).

The second equation gives

_e(l+K)= n] a, a= v, u a, = 403 512.3 +-3.2 kma/s i (46)

which connects the gravitational parameter #,-- GM o for the Earth with K, the ratio of the Moon's

mass to the Earth's mass.

. THE CONSTANT OF LUNAR INEQUALITY AND THE

PARALLACTIC INEQUALITY IN MOON'S ECLIPTIC

LONGITUDE

The Parallactic Inequality in the Moon's ecliptic longitude is given by E. W. Brown's lunar

theory as follows

I/K- 1 7, (47)
1 - K n_7-, = (49853:'2 + 1:" 2) I-7KK+ 1 a®P, = (49853."2 -+ 1:'2) 1 +K rt,

or with the newest data for the lunar distance and the astronomical unit

I/K - 1

P, = (128:" 1005 + 0:" 0037) _ 1 (48)

Newer determinations are:

P, = 124:' 86 +- 0:" 15 (J. Bauschinger, Ref. 16)

= 125.154 (E. W.Brown, Ref. 8)

= 124.93 (H. Battermann, Ref. 17)

= 124.969 ± 0.042 (D. Brouwer and O. B. Watts, Ref. 18)

On the other hand, the constant of Lunar Inequality is defined by W. deSitter (Ref. 10) as

L = _ no 206264:'806247 _ _ 530:'0089 _ 0:'0028
1 +K sin rr, - 1/K + 1 rrt 1/K + 1

(49)
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Newcombusedthelunarinequalityin theSun'slongitudewhichis, accordingto deSitter,L 8 =

1.00450L. The ratio of P. and L, depending only on t<, is

49 853:'2 +- 1:'2 (l/t< - 1 ) = (0.241 695 ± 0.000 006) (1/K - 1)
P,/L = 206 264:' 806 247

(50)

The mass ratio is therefore

1/K = (4.13744 4 ± 0.00010) -L-- + 1P* = 530." 0089 L± 0:" 0028

Observed values for the constant of Lunar Inequality are:

-1 =
128." 1005 + P,

128_' 1005 - P.

(51)

L 6['456 _ Of'Of2

6.414 ± 0.009

6.4305 ±0.0031

6.4390 ± 0.0015

6.450 _0.010

6. 4378 ± 0.0015

6.4356± 0.0028

6.4428± 0.0014)

6.443O± 0.0017)

(Newcomb, Ref. 14) From observations of

(D. Gill, Ref. 19) "

(A.R. Hinks, Ref. 20) v,

(H. Spencer Jones, Ref.21) "

(Morgan and Scott, Ref. 22) "

(H. Jeffreys, Ref. 23) "

(E. Rabe, Ref. 15) ',

(E. Delano, Ref. 24) "

Sun

Victoria

Eros (opp. of 1901)

Eros (opp. of 1931)

Sun

Eros (opp. of 1931)

Eros (opp. of 1931)

Eros (opp. of 1931)

The latest reevaluation of all Eros observations during the opposition of 1930/31 by E.

Delano (Ref. 24) gave

L =6f'4428 ± 0['0014

L = 6.4430 ± 0.0017

(from right ascensions of Eros)

(from declinations of Eros)

8 ppDelano used the old value n o = . 790 for the solar parallax and obtained therefore l/t<

81.222 + 0. 027 and 81. 219 ± 0. 030, respectively. With the newest values for no and rr," there is

now

re spectively.

l/t< = 81.2637 and l/t< = 81.2612

6. ANOTHER METHOD FOR THE DETERMINATION OF THE

RATIO OF THE MASSES OF EARTH AND MOON

The mass of the Earth is given by

4 3
M®=-3-- _ R. (1-/)p® (52)

where / is the flattening (oblateness) and po is the mean density of the Earth. On the other

hand the mass of the triaxial figure of the Moon is given by

Ma = _ n" a b c pf - 3 rr a3 • /9I (53)
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Because the longest axis is always directed to the Earth (neglecting the small librations) and

can never be seen, the lunar radius of the visible disk is

Rt _ b+ c . Ri 1 (b ___)2 ' a 2 + = cr (54)

That yields for the mass of the moon

4 (b/a)(c/a) (55)
M, - 3 rr R, 3 oS P,

The mass ratio is therefore

= \ R, } (-GTa-)(c/-_) p, (b/aXc/a) k 3 (56)

where

k - Rq _ sins, _ s/ s, -0:'003 (57)
R e sin nf rrq" rrf - 0:" 157

is given by the lunar parallax, rre, and the apparent semi-diameter of the Moon, sf .

A reevaluation of Sir Harold Jeffrey's best data on the Moon's figure by the author gave

(see section 12)

b c

- 0.9998116 ; - = 0.9993720 ; a = 0.9995918
a a

From the secular perturbations of artificial Earth satellites there follows as best value for the

Earth oblateness

1/{ = 298.30 ; 1-{ = 0.99664767

so that

1/K = 0.9962 409 o/A_ (58)
k3

Taking for the mean densities the well-known and frequently used values

Po = 5.517 ± 0.004 g/era 3 (Heyl) ; p, = 3.342 + 0.005 g/em s (Jeffreys)

the density ratio, independent from the assumed value of the gravitational constant, G, becomes

P_/PI = 1.6508. Therefore

I/K = 1.6446/k 3 (59)
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With rr," = 3422:" 438 and various values for s, the following table is obtained

sq k 1/_

932/" 58 (Newcomb, Ref. 25) 0.2724891 81.286

932.63 (American Ephem., Ref. 26) 0.2725 037 81.272

932.80 + 0.07 (Hirose & Manabe, Ref. 27) 0.2725 534 81.228

The American Ephemeris is using k = 0.2724953, based on Brown's lunar parallax. The values

for 1/K obtained in the previous paragraph are between the two latter values in this table. The

arithmetic mean of these two latter values will be taken as the presently best value, namely

1/K _ Me _ 81.250(1 ± 3 x 10 .4 ) = 81.250- + 0.024 (60)

and therefore

k _ R__£%= 0.2725289 ± 0.0000273 (61)
R°

The last equation of paragraph 4 now gives

403512.3 -398606.4 + 4.9 km3/sec: (62)
tie- GMe- 1.0123077

for the Earth, while, for the Moon,

lif - Ght t = t<li® = 4905.92 +- 1.52 km 3/see 2 (63)

7. GEODYNAMIC (TERRESTRIAL) RELATIONS

The surface of the Earth (geoid) can be approximated as the surface of an spheroid assumed

as an equipotential surface. The equation for the Earth's radius, as function of the latitude, is

then given by

R= R,[1-/sin 2 _0+ (I [2-K)sin22 _= Re l-/sin26-(l /2+K) sin2263(64)

where _0 is the geodetic (geographic) latitude and 6 the geocentric latitude. They are related by

tan 6=(1-/)z tan _0'=(1-e2) tan _0 (65)

where e = _//(2 - _ is the eccentricity of the meridian ellipse of the Earth. The equation of

the Earth-ellipsoid is obtained by setting K = 0. The maximum depression, - K R,, of the sphe-

roid from the ellipsoid is reached at the latitude 45 °. It will never be more than 5.17 m. For the

spheroid as equipotential surface there is

' I '-_ J P2 (sin6) + T5- K P4 (sin 4)+"" + -_ I R2cos 26

- -i >IiGM 1- _ 1, R P, (sin 6 + -_- 12R=c°s 26 =c°nst. (66)
R n=2
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andtheaccelerationof gravityat this surfaceis

g = [grad UI =g, [1 +/3sina_°+ysin a 2 _°] =g,[l +/3sina¢+(y+ /_{) sin=2 ¢1 (67)

where _ is the angular velocity of the Earth's rotation,/_ and y are constant gravity coefficients

and ], or ] and K are constant oblateness coefficients. These coefficients depend only on [,

K, and a parameter containing _ 2 (centrifugal force parameter). This latter parameter is a little

different in the various second-order theories which have been developed. Taking

f/ = 7.292115146 x 10 -s rad/sec

1// = 298.30 ; 1 - / = 0.996 647 670

G = 6.670 x lffScma/(g-sec 2) ; Pm= 5.517 g/cm a ; G p= = 3.679839 x 10 -7 (68)

then the following parameters could be used

f_= R a [2 =

GM 4/3 n G Pm (1 -/) = 0.003461 369 [Herrick, (Ref.12]
(69)

_2 R 3 _2
K-

GM 4/3 n G p r,
- _'(1 - [) = 0.003449766 [Jeffreys, Ref.ll] (70)

_- K) = 0.003449 843 [deSitter,
Ref.10]

(71)

3 /.2 3 16
1-A-_- _+[+ - 7 [_+--y-- K

g_
1-A-_ + ] + 1/2 K

= 0.003467 730 [Darwin, Ref.28; Helmert, Ref.29] (72)

where R v = R, (1 - /)l/a is the radius for a sphere of same volume as the Earth and RI =

R, (1 - 1/3 [+ 5/9 /2_ 8/9K) is the mean radius for which P2 (sin _0)=0or _ sin'lx/1-_=

35°15'51."8. A = 0.88 x 10 -6 is the mass of the Earth's atmosphere (expressed in mass of the

Earth) which does not contribute to the surface gravity of the Earth. Different assumptions have

been made for K. Bullard (Ref.30) found 106 K = 0.68. This value was accepted later by Herrick,

Baker, and Hilton (Ref.12) On the other hand, deSitter found values of only 106 K = 0.47 to 0.52

and used the round mean value 106K *= 0.50. The theoretical limits are according to deSitter (Ref.

31)

0 x< K ..< ['N- g [2= (3.62 - 2.81) x 10-6= 0.81x 10 -6 (73)

The different formula systems now yield
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1 1 2 9 4
] =/-T_- T/ +1-7-/_ + T,<

i 1 1 4

1 1 1 4 _:
=I-_-_1- 2f 2+ 7/_1+ 7

1 1 2 1 3 m _. 4
=f- 2 m- 2- I + :-fro + _- +-y,'<

(74)

K= 6 D = 3f 2 15 247 - T/_" +T '<

24= 3/ ---f_'+-TK

24= 3/2--/_'i +T K

24
= 3f2 15/m + K-T T

15 Toa 85 26 ?t_ + + K/_=2"_- f-T -$ 5

8
5 _,_ {_ 17 15 %,a+ K=T i-_ I'_" + T 7

5 17 15 8

8
5 17 fm +=2m-f-]-_ y

1 5

1 : 5 f_,_ 3_<s/-_

1 f2 5 ...
= -_ - -_ f<.oi - 3 K

1 f2 5fro -31<= -_ - -_

(75)

(76)

(77)
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1 K
X =- go/(GM/R2_) = ] -A-c_+J+ -_

16
3 /2 3 [_ + K

= l-A- _ _+/+ - Y 7

I - A 3 _o" = 27 16
2 + /+ [ - 1_ f_"+ 7- K

3 2 27 16
= l-A- _- ,_1 +f+f - _- /_ + U- '<

3 /2 27 /m + 9 2 16=I-A-_ re+f+ -I-4 _ m +U-_
(78)

Using these equations and the above-given constants for the Earth then the following table

is obtained with ]2 ---(C-A)/(MR_)= 2 ] and ]4 =-4K =- 8 D'
3 15 35 "

Coefficient

106 ]

106 K

106 ./2

106 J4

X

K=0

1623.48

8.85

1082.32

- 2.36

5302.92

- 5.85

0.99816566

K = 0.50 x 10 -6

1623.77

10.56

1082.51

- 2.82

5303.49

- 7.35

0.99816680

K= 0.68x 10 -6

1623.87

11.18

1082.58

- 2.98

5303.70

- 7.89

0.9981 6721

The numerical values for I]41 are a little higher than the values derived from the observed secu-

lar perturbations of artificial satellites. Thus the data for K = 0 will be used here.

The gravitational parameter of the Earth is now given by

4 R3 ge R_
t*o -_ 6M_ = _- nGpo (1-/)e X

which corresponds to 1/K = 81.250. Taking, furthermore,

X= 0.998 165 66 that yields

398606.4 + 4.9 km a/sec 2 (79)

4

n= 4.188790204; 1 -/= 0.9%647670;

go R_ = X/_o = 397875.2 +- 4.9 km 2/sec 2= 3.978752 x 1014 m a/sec a (80)

and

go _ 4
Ro 3 n (1-/)XGpo = 4"167090090Gpo (81)
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or with G=6.670x 10 -scm 3/g-sec2

(g,,/R,)x 10 _
Po = 2.779 45 [ g/cm a] (82)

8. EXPERIMENTAL VALUES OF THE GRAVITATIONAL

ACCELERATION OF THE EARTH

The observed gravitational acceleration at the surface of the rotating Earth can be repre-

sented by the formula

g=ge[l+_ sin 2 _0+ysin 2 2 _° +Scos 2 _0 cos 2()__;_0) ]
(83)

where ?, is the geographic longitude measured eastwards of Greenwich meridian. The first term

corresponds to a sphere. The next two terms give the contribution due to the oblateness of the

Earth spheroid, while the longitude term is due to the non-ellipticity of the equator when the

Earth is assumed as a triaxial figure. The longitude, ]*0, gives the direction of the longest semi-

axis of the equator. _ is connected with the difference B - A of the equatorial moments of inertia

or with the flattening, fo, of the equator by the relation

8=9 B-A 9 3
4 M-_ R_ = T A/.(2-f o) = § f° (84)

because the inhomogenity factor of the Earth is given by

C C 1 (85)
A= Me(a2+ b2 ) - 2M® R 2° _ 6

The most important determinations from gravity measurements since 1915 have been compiled in

a table on the following page.

All these gravity measurements are still based on the standard gravity value of Potsdam

(_0= 52 ° 22: 86; h =+ 13 ° 4. _06; b=87 m)

g = 981.2740 gal

obtained by F. Kuhnen and Ph. Furtwangler (Ref. 43). It is necessary to revise the Potsdam

system. For the correction of the Potsdam value, the following data are given (Refs. 44 and 45):

P. R. Heyl and G. S. Cook (Wash. D.C.) : - 20

Bullard (Teddington, G. Brit.) :- 15

J. S. Clarke (Teddington, Gt. Brit.) :- 13

Ivanoff (Leningrad, U.S.S.R.) : - 4

P. R. Heyl

Bullard and Browne

Morelli (1954)

H. Jeffreys

Wollard

A. Betroth

Morelli (1959)

:-15

:- 16

:- 16

:- 13.4

: - 14 to- 18

:- 12.5

:- 12.9

milligall,l,1, }

11

11

11

11

11

II

II

according to absolute

gravity measurements

according to

reca lculations
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Taking for go the latest determination of Heiskanen and Uotila (Ref. 42 ) which is nearly in

agreement with the average value of all determinations, and using the correction due to H.Jeffreys

(Ref.39) the following value is obtained

g_ = 978.0496- 0.0134 = 978.0362 gal = 9.780 362 m/sec 2 (86)

9. THE DYNAMIC OBLATENESS AND THE CONSTANTS

OF PRECESSION AND NUTATION

The dynamic flattening H = (C - A)/C is connected with Newcomb's constant of precession,

P, by the relation

P 94 419 319" 1 678 932." 29 for 1/K = 81.250 (87)
H - 530977."04 + 1/K + 1

while the constant of nutation, N, is given by

N 252871"" 231 982"

H - l/K+1 cos¢ - 1/K+I
= 2820."45 for 1/K = 81.250 (88)

where cos E = 0.917 3917 (for 1900.0) has been used for the cosine of the obliquity, E, of the

ecliptic. The constants in the equations are obtained from Brown's theory of the motion of the

Moon and are well known. Both equations yield

P

_- = 2.288872 (1/K + 1) + 407.01140 = 595.271 for 1/K = 81.250

while observed modern values of P and N lead to

P _ 5493." 62 = 596.614 and thus 1/K _ P/N 178.8218 = 81.84
,V 9:'208 2.288 872

This value for 1/K is by far too large. H. Jeffreys (Ref. 39) has shown that in the equation for

the constant of nutation, N, another constant H' for the dynamic flattening must be used due to

the deviation of the Earth's interior from the isostatic equilibrium (H'< ff). Therefore _ can be

determined only from P and 1/K. With P0 = Po + Pt , the lunisolar precession, p = 3__ v$ n , the
2 c2 •

geodetic precessio_ (a relativistic term due to W. deSitter), p, the general precession in longitude,

and A, the planetaIy precession in right ascension, Newcomb's precessional constant is

p _ P__0___ - P+ P__a_+X (89)
COS £ COS E"

Values for 1900.0 derived from observations are (for a tropical century)

P= 5490:'66 p= 5025/'641 A= 12/'473 Pa= 0 (Newcomb&Andoyer, Ref. 46)

5493.156 +- 0.175 5026.000 12.493 1.915 (deSitter & Brouwer, Ref.10)

5493.847 5026:" 650 12.469 1.921 (Clemence, Ref.7)

According to newer investigations, Newcomb's value of the general precession in longitude
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must be corrected by Ap = + 0:'75 (H. R. Morgan, Ref. 47.), Ap = + 0:'71 (J. H. Oort, Ref. 48),

Ap = + 0"86(Dirk Brouwer, Ref. 48), Ap = + 0:'84 (Poulkovo Obs., Ref. 48). The average value

for the correction may be Ap = + 0."80. All these investigators take AX- 0. In another paper,

J. H. Oort (1943, Ref. 49) takes A_ = + 0."02, a correction also used by deSitter. The correction

for P is therefore

AP Ap + Ap R +AA 0."80+ 1.92- + 0.00 = 2['96 (90)
cos e 0.917 3917

The value

P = 5490:'66 + 2796 = 5493762 (91)

will be accepted here. The dynamic flattening is now

H _ C-A _ 5493762 = 0.003272091 = 1 (92)
C 1 678 932['29 305.615 ± Q.05

and thus

3 c ]
- 0.49616o± 0.00017 (93)

q _ 2 MoR_-"e - H

and

c I2
mo R 2 - H@

- 0.330773 ± 0.00011 (94)

The quantity q may be calculated in another way. Clairant's theory for the Earth in hydro-

static equilibrium has been developed to the second order by Radau (Ref. 50), Callandreau (Ref.

51), and Darwin (Ref. 28). deSitter (Ref. 31) gives

3 C - 1 - 1 2 ( 2 ) x/l+ 711 (95)
q -= 2 ,_IR_ _ 91 - _ 1- -_ / 1+ X z

where

/71 =

5 10 _2 4 /2_ 6 [_iT'_1 +-Ti -- 1 + -7- T

5 /= 41-_ +7

-- 2 (96)

and 1 + Xl is an average value of Radau's function, { (7/), depending on the internal density

distribution of the Earth. The most reliable value, 1 + Az = 1.00016, was derived by Bullard

(Ref. 30). With the above data for [ and _z the above-mentioned equations give, for K = 0,

r/_ = 0.57440 ; q = 0.49815

C 2

MR -_" 3 q=
e

0.33210
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These data are not compatible with the previously derived data (eqs. 93 and 94), showing that

the hypothesis of hydrostatic equilibrium is not fulfilled for the Earth.

10. DENSITY DISTRIBUTION WITHIN THE MOON

It is very difficult to derive a consistent system of lunar constants. Most reports on this

subject are based on the work of Sir Harold Jeffreys. However, not even this source is free

of inconsistencies. The reason is that many lunar constants are coupled with each other by rela-

tions. Therefore a systematic investigation of these relations will be necessary.

It is assumed that the density p within the Moon is constant over concentric ellipsoidal
shells

a---_ + b2 + c2 = /l (97)

where gt varies from 0 at the center to 1 at the surface, and where

¢/a = #cos 6 cos 0

rl/b = tlcos 6 sin

_/c = /_ sin 6

(98)

are the relative coordinates of the mass element

dm =p(l z) d_: dr/ d_=p(p.) abc_ 2 cosc_dl_d6dO (99)

The angle _ is the lunicentric latitude and 0 the longitude, a is the longest semi-axis of the

surface ellipsoid pointing toward the Earth, b the smallest semi-axis in the lunar equator, and c

the rotational or polar semi-axis.

Using equations (98) and (99) after observing that

f _0 c°s2 ,¢t/2 2in art I .rt/a 4 ;/ sinZ6 cos q_ d 6 =
sinl0 dO= 0 dO=rt ; | cos 3 _fi d_b = _ o-rt/2

u,+ O ,a'. _/2

the moments of inertia around the a, b, c axes, respectively, become

A = (112 + _'2) dm = XM (b2+ c 2)
0

I" 2
B= (ff2+ _2) dm =XM (c + a 2)

0

C= (_:+ //2) dm = XM (a: b i+ ) (100)
0

where the integrations are taken from 0 to 2n with respect to O, from - Tr//2 to n//2 with respect to

and from 0 to 1 with respect to #. In the last equation M = 4/3 rtabcpm is the total mass

(Pm is the mean density) and the inhomogenity factor, X, is given by

f' f0'p_+dt z pg4 d_

0

_ 0

(101)
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Because a > b > c, there is A ( B ( C. A constant density model gives )_= 1/5= 0.2. For

Jeffreys compressional model with constant bulk modulus (Ref. 52 ) Roche's density law [with

p= = 3.342 g/cm 3 (mean density), P0 = 3.290 g/cm 3 (surface density) and Pc = 3.420 g/cm a (cen-

tral density) ] becomes

P=Pc -(Pe-Po)# 2 = 3.420- 0.130# 2 [g/cm s]
(102)

The inhomogenity factor is, therefore,

5 5

1 Pc- _ (Pe-po) 1 Pc- -f(Pc -Po) 0.9955

x=5 em =T 3 - 5
P_- T(P_ - po)

= 0.1991 ± 0.0001 (103)

11. CONSTANTS OF THE PHYSICAL LIBRATION OF THE MOON

C-B
The values of f = and the inclination of the Moon's equator to the ecliptic can be

C-A

determined from observations of the physical libration of the Moon. Due to the difficulty of

observations near the irregular limb of varied illumination the values for f scatter widely, as

can be seen from the following table (Refs. 11 and 13 ):

C-B

Author Year [ =- C- A

F. Hayn 1907 0.75 ± 0.04

F. Hayn 0.85 ± 0.07

J. Stratton 1909 0.50 ± 0.03

I. V. Belkovich 1936 0.84 ± 0.08

I. V. Belkovich 1949 0.67 + 0.03

K. Koziel 1949 0.71 :t: 0.051

K. Koziel 1949 0.60 ± 0.055

A.A. Nefedjev 1950 0.65 + 0.045

A.A. Yakovkin 1950 0.85 + 0.03

T. Weimer 1954 0.60

Mean Value 0.70 2

Sir Harold Jeffreys used/= 0.84 in his book The Earth (Ref. 11). Later he recommended /= 0.67

CRef. 53 ) and used /= 0.639 + 0.014 in his latest paper (Ref.54).

The secular motions of the perigee and node of the lunar orbit are also influenced by the

Moon's oblateness coefficients (L and K). From Jeffreys equation for the perigee motion follows

(Ref. 1/ ):

380L- 1192 K= 6.420- 3896]e _ 0
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and thus

K 380 812

[= l--L- _ 1 1192 - 1192 - 0.6812

The mean value of the table is consistent with this lower limit for [ and therefore

/ = 0.70 ± 0.02 (104)

will be adopted in this paper.

A new investigation of the libration of the Moon's axis by H. Jeffreys (Ref. 54 ) leads to

C-A

/9= C - 0.0006279 ± 0.0000010 (105)

taking into account a solar effect not evaluated by Hayn.

The three quantities ;% /, and/9 are sufficient to calculate all other quantities, provided the

mass and the mean radius of the Moon are known.

12. RELATIONS AND NUMERICAL VALUES FOR THE DIMENSIONLESS

MOMENT OF INERTIA PARAMETERS

The same symbols for moment of inertia parameters will be used as they have been intro-

duced mainly by H. Jeffreys (Ref. 11). The numerical values are based on the above-given

parameters A, [, and/3 ; namely

A B C

M(b_+c "z) hl(c_+a _) - M(a2+ b _)

C-B C-A C-B

= M(b u-c 2) - M(a 2-c 2) - M (b 2- c s) - 0.1991 -+ 0.0001 (106)

f

a C-B 2J-K ] - 1/2 K bS- cS

/9 C- A 21 + K L aS - c2
- 0.70 +- 0.02 (107)

9 --

C-A ]+ 1/2 K L

C g g

a s _ c 2
aS + b s= 0.0006279 -+ 0.0000010 (108)

The other parameters can be derived from these as follows:

1-/ =Y = B - A K K a2- b2 3h-g _ 3)./8- 1

C-A ] + 1/2 K = _ = a 2_ c 2 L /9

= 0.30 ± 0.02 (109)
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C - B ] - 1/2 K L - K b 2 - c 2

C ffi = g g - a2+b 2
0.0004395 +-0.0000133

(110)

B-A

Y C

K a 2 -- b 2

-fi-a=- =(1-313= _ = 0.0001884 + 0.0000129
g

(111)

E C 3)_ 3 a 2 + b 2
- X _ = 0.5972 ± 0.0003g - 2 Ma-f-- l+y - 2

(112)

3 C-A 1 3 a2_c2
2 Ma 2 J + 2 K = g_= _ A a2

- 0.0003750 ± 0.0000008

(113)

A+B a2+ b 2

C- 1 1+/ 3 2
3 2 - L- 1 1+/ L- -- K = X

] - 2 Ma 2 -_ K- 2 2 1 f 2 a 2

¢2

I y) =g i= g (fi - _- ---_-- =g (a+ _- y) = 0.0003187s±0-0000044
(114)

3 B-A 3 a 2 -b 2
K 2 Ea r =(1-/)L=gy =g h a--Tr-- = 0.0001125+0.0000077 (115)

The dimensionless moments of inertia and their differences are obtained from the above-men-

tioned data as:

a 2 _ C2
C-A 2 2]+ K h - 0.0002500 +0.0000005 (116)

Ma 2 - -_L - 3 a 2

C-B 2 [L - 2]-K -h b2-ca
M a 2 - 3 3 a_ 0.000 1750 +0.0000054 (117)

B-A 2 (1-f) L= 2 a2-b a
Ma 2 - 3 _- K =X a2

0.000 0750 ± 0.000 0051 (118)

A 2 2 b2+c 2

_la 2 - 3 g (1--3)= ff (g-L)=X a2 - 0.3978_v
+_0.0002 (li9)

B 2 2 c2+a 2
M a 2 - 3 g (1 - a) = -_ (g -/L) = h a2 - 0"3979s2

± 0.0002 (120)
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C 2 2_. _ _. a: + b2 (121)
Ma 2 - 3 g - 1+ y a2 0.39812¢ ± 0.0002

The ratios of the semi-axes now become

b 1-), 1- 2y _ 0.9998116 + 0.0000129 (122)
a = l+y -

c 1 2/3 _ _ 2y = 0.9993720 -+- 0.0000010 (123)

1 + y (1 -/)(1 + y)

These data seem, at present, to be the most reasonable. H. Jeffreys' value

3 C 0.5956 ± 0.0010
g - 2 M a2-

is slightly low, and affords a higher density concentration towards the center as has been as-

sumed by Jeffreys.

13. THE FINAL DETERMINATION OF THE DIMENSIONS,

MASSES AND MOMENTS OF INERTIA FOR THE EARTH

AND THE MOON

Using the obtained value of the gravitational acceleration, g _, at the equator (eq. 86) in the

relations (eq. 80) and (eq. 82) at the end of Section 7 there follows at once R e = _/Xtlo/-_e =

6378 169.835 m and Pe = 5.516 964 g/cm 3. The final values, adopted for the Earth, will be
taken as

and

R e = 6378170 (1 +-3.2 x 10"6) m = 6378170 ± 20m (12q)

p® = 5.5170 (1 +- 7.3 x lO4)g/cm 3 = 5.5170 ± 0.0040 g/cm s (125)

The volume of the Earth is

4 3 1027 (1 + 1.02x 10 -s) cm 3
Ve= _ rrRo(1-/)= 1.083 225 x

= (1.085225 + 0.000011) x 102¢ cm 3 (126)

while the mass is given by

M e = /z° = V® p®= 5.9761x 10 2¢ (1+- 7.2 x 10 -4) g =(5.9761-+0.0043) x 102¢g
G

(127)

and the polar radius now becomes

R =R (1-D=6356788(1-+3.7x10-6)m =6356788-+24 m (128)
p •

B-24



The unit for the moments of inertia is

M • R2_ = 2.43114 x l0 4s (1 _: 7.3 x 10 -4 )g cm 2 = (2.43114 ± 0.0018) x 1045g cm 2 (129)

and therefore

2 1042 (1 + 9.1 10-4)gcm 2 = (2.6313 ±0.0024)x 1042gcmC-A =]2 x M e R_= 2.6313 x - x 2

(130)

2 2

C = _ q x Mo R2. = 8.0415 x 1044(1 -+ 1.07 x 10-a)g cm 2 = (8.0415 ±0.0086) x 1044g cm

(131)

It is now possible to give corresponding data for the Moon. The mass is given by

M = KM e = 7.3552 × 10 2s (1 +- 1.02 x 10 -3) g =(7.3552 -+0.0075)x 1025 ,_ (132)

while the mean visible radius is

R, = kR. =1738236(1±1.0x 10-4)= 1738236 +-174 m (133)

and therefore the semi-axes of the three-axial Moon are

a - R, _ 1738946 _- 186 m (134)
G

b = a (ab---) = 1 738618 ± 209 m (135)

c =a (c) = 1737854 ± 188m (136)

The unit for the Moon's moments of inertia is

M, a 2 = 2.22416 × 1042 (1 +1.23 x 10 -3 )g cm2 = (2.22416+ 0.0027)× 1042g cm2

(137)

and thus the moments of inertia are

A = 0.884942 x 1042 (1 + 1-73 × 10 -3) gcm2= (0.884942 +_0.00153 )x 1042g cm 2 (138)

B= 0.8851o9 x 1042 (1 ±1.73x 10-3) gcm 2 =(0.8851o 9±0.00153)x 1042g cm 2 (139)

C= 0.885498 x 1042 (1 ± 1.73 × 10-3)g cm 2 = (0.885498+-0.00153)× 104Ugcm 2 (140)

C A +2 B (0.000473 + 0.000007)x 1042 gcm u (141)

B - A = (0.000167 _+0.000012) x 10 42 g cm 2

The oblateness coefficients of the potential function of the Moon are

(142)

C- (A + B)/2 2

]2 = M, a 2 = 3- ] = 0.0002125 ± 0.000 0029 (143)
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B-A 1

rfj 2) 4 M_ a2 - 6
K (144)

The derived value for the equatorial radius of the Earth (eq. 124) is in good agreement with

the following values:

Author Year Ref. R o

W. M. Kaula 1961 55 6 378 163 +-- 21 m

V. C. Clarke, Jr. 1962 56 6 378 165 _+25

I. Fischer 1962 57 6 378 166

Present Report 1962 , 6 378 170 +--20

I. Fisher's value for 1/K = M o /M( = 81.268 is also in good agreement with the value in this

report. The presented system of constants is not only a consistent one, but the most serious

discrepancy has been removed in determining the gravitational parameter fzo from terrestrial

data and, on the other hand, from the lunar mean motion in combination with radar measurements

of the Moon's distance.

Finally, the present data for the Moon's moments of inertia are compared with the values of

other authors in the following table:

Author

B. E. Kalensher

Makemson, Baker, Westrom

V. C. Clarke, Jr.

Present Report

Ref.

I
581

131

56 I
--- I

A B

103_g_ 2 103_g.m 2

0.87976 0.87985

0.88837 0.88856

0.88746 0.88764

0.88494 0.88511

C

14%d

0.88032

0.88893

0.88801

0.88550

0.00051

0.00047

0.00O46

0.00047

B-A

103Skg.m2

0.O0009

0.00019

0.00018

0.00017

The values of V. C. Clarke, Jr. are used for the Ranger larogram.

14. THE EARTH ELLIPSOID

The equation of the rotational ellipsoid or spheroid is

where

x2 +y2 z2

x = R cos& cosh = R ecos 0 cosh =- p, cos¢ cosh

y = R cos 6 sin h = Rocos 0 sin h = p, cos_0 sin h

z = R sin <5 = R sin _ = pn(1-e 2) sine
P

(145)

(146)

(147)

(148)
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and Rois the equatorial Earth radius, R v the polar Earth radius, R the local Earth radius, Pn the

normal radius of curvature, A the geographic longitude (positive eastward of Greenwich), ¢ the

geocentric latitude, 0 the reduced latitude, _a the geodetic or geographic (= astronomical) lati-

tude, and e the first eccentricity of the meridian ellipse. Introducing the second eccentricity,

_, and the flattening (oblateness, ellipticity), /, the following relations hold

/ _ R o - Rp__= 1 - X/-I - e 2 = 1 1 1 e2 1 e4 1. 1. 3' 5"' "(2K -- 3) e2K+°..

R e \/l+e= - 2- + 8 +'''+ 2.4.6.8...(2K)

(149)

e== R=-- £ _ 2
R_ 1__2 - f (2- f) = 2 f - f2 (150)

lu _

e== R2-R2 e2 /(2-DD_ =2/+ 3/2+ +(K+I)[ K"n{ - 1- 7 (1- ... +... (151)

thus

R----P--V= 1 - [ =Vq--- e 2 - 1 (152)
Ro VriE-7 z

The different latitude angles are related by

tan ¢ = _/1 - e _- tan 0 = (1 - e 2) tan_ o (153)

tan 6= (1-/) tan ¢ = (1-D 2 tan _o (154)

By differentiation the relation

U 2

R_ d6 = R. d O=P d _o (155)
p

follows.

Thus the line element is

= 2 2 2 2 2 2 COS20 dh2ds2=dx2+dy2 +dz2 dr2+r2dq52+ r cos dodh2= Re(1-e cos 0)d02+ R,

(156)

The parameter p is the mean radius of curvature, and is correlated with the normal radius of

curvature

2 /

Rv R_,/Rp - R cos ¢ (157)
P. - (1- e2 sin 2 _o) 1/1 - (1 + e2cos 2 qo) l/1 - cos _o -

I 5 e6 sin6 q_ +...11 3 e4 sin4 _o + _-= R, 1 +-_-e= sin2_O +

and to the meridional radius of curvature
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2 /R, Ro2 /RpR_ (I - e 2 ) Rp
gin= (1- e2 sin2¢)3/2 = (1 -e2 sire ¢)3/2 - (1 +_2c0s2 _0 ) 3/2

15 4 35 6 ] (158)
3 e 2 sin 2 _o + e 4sin _o+ e sin 6 _o +...=Ro(1-e 2) I+_- _ ig

by the relation

P=_/PmP n R R_ /R_ = R v[l+ e 2 sin u _0+ e 4 sin 4_o+e6sin 6_o+...]
- 1- e _sin 2 _0 - 1 +e2cos 2 _o

(159)

The radius of a parallel of latitude is p. cos _0= Re cos _b= R cos _. Because /ore 2 are small

quantities the latitudes _, _b, and _0 will not differ very much from each other. Therefore it is

very useful to have rapidly converging series developments available for the differences q5- _0

and _b- _0. With

RUe _ 2 1-(1 - e2) e 2 1 /2 1 [4
m = R2 + R_ = 1 + (1 e 2) = -2-----$-_e = / + 2 - _- +... (160)

e p

there is

m2 m 3

= _0 _m sin 2 _o + 2- sin 4_ 0- -_- sin 6_ ±""
(161)

m 2 m 3

_o = _ +m sin 2 q_+ _- sin 4& + -_- sin6_+...
(162)

and with

Re-R p _ 1--(1-/) / 1 1 [2
n - Re+R v 1 +(1-/) - 2-f- 2 /+74 +"'

(163)

there is

n 2 . n 3

= _O_n sin 2 _o+ _-sin 4 _o _ _- sin 6 _o+""
(164)

n2 n3

_o = _b +n sin 2 _b + _- sin 4_b+ --_ sin 6 _+... (165)

An accurate formula for the difference ¢ - _ is given by

e 2 tan

tan ( _0_ q_) = 1 + (1- e2) tan 2

e2sin _0 cos

1 - e 2 sin 2 _0

The local Earth radius (radius vector) can be accurately calculated from the relations

/1-- e2_(2-- __ sin_ °'
Rp _ Re_/1 -e2sin2_ = R%] 1 -e2sine2_

R =X/x2+y2+z2 = _/1-e2cos2_ '

]7 1 + m 2 + 2m cos 2_o1 -- 4m (1 + m)-2sin2 q) l+n Ro n 2
= R T 4n(1 +n)-2s--si_2p - l+m 1 + + 2ncos 2_0

(166)

(167)
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By taking the logarithm of the last relation there follows

in --=R In 1 + n

R l+m

1 1

-- +_ in (1+m2+ 2m cos 2_)- 7 in (l+n 2 + 2n cos 2_ ° )

or, using a known series development,

R 1+ n I mU-nU mS--n3 "]
= + M (m-n) cos 2q cos 4_ ° + -- cos 6_ (168)log _- log 1+ m 2 3 _'"

where M is the module(M = 0.4342944819). This series is due to Encke.

Conventional power series for R/R e can be obtained as follows:

R (1 + 2sin 2¢)-1/2 1- 1 2 sin u ¢+ 3 e4 sin 4 ¢_ 1__ 6 sin6 ¢ ±... (169)

The above-mentioned power series for the local Earth radius can also be written

Ro - 1- e2- -¢4+8 1-6 e6 sinU¢- _4_ ¢ sin2 2¢+ dSsinUCsinU2¢+...

(170)

or

(3 1 ) 5 fa sin 2¢ sin 2 2 ¢+... (171)R _ l_-/sin2¢ - /2+ 2-/3 sin22¢ +
Ro

using eq. (151).

In order to obtain power series for the local Earth radius as a function of the geodetic lati-

tude, _o , it is useful to set

4m e 2 (2- e 2) • k" 4n
k=_=(l+ ' (1+ n) z= / (2-/)= e2 ," k/k'= 2--e 2 (172)

the non-dimensional local Earth radius is now

R = 1_ 1 1R---_ _ (k -£')sin 2 _o_ --8 (k2+2kk'-3]_'2)sin4_°- ]_3+k2/_'+ 3/_k'u-Sk'3),si_o ....

(173)

or

R 1 e2[( 2 _ e2 ) _ 1] sin2q0- 1 e4[(2_ e2)2 + 2 (2 - e2) - 3]sin4_0

1 'e 6 [(2 e2) a (2 2)2 2)_
16 - + - e + 3 (2 - e 5] sin 6 _0 .... (174)

Because
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e2=2 [-[2 ; 2-e2 =2-2[+[2

there is, also,

_= ' -Tl ....R 1- ([--_ [2+ _ _ 5 i 2 13 3sin 6 q)
R.

_ff 1 3) 13 3 2=l_[siniq_+ 5 [2 _ f sin22_o + _ff / sin 2 _0 sin 2 _o +...

1 -- 5[+1 _6/2+ 5 [3 Q1 13[ 3 )cos 2_0- @gf + _f3)cos4_0+ ___5 z 5 13 [ 3cos 6_0+...= _ + /--_
(175)

It is also important to know the arc corresponding to l°inlongitude, namely

n n R e cos _0

v = T_- p" cos _0 _ 180 (1 --e i sin _° )1/2

( 1 3e4 sin4_o +... )_ __E___ R. cos 0 1+ e 2 sin 2 _ + -_
180

tl 1 3 ) (8z 9__9_e4_ 3 e4rr R + eZ+ e4 c°s_° - + 128 / cos 3 _0 + -f_ cos 5 _o_:...180 " g _-

(176)

and the arc corresponding to 1° in latitude, namely

3 15 ]lr R_(1 -e 2) rr Ro(1--e 2) 1+ 5 eZsinU_o+-ffe4sin4_o +...
# - 180 Pm- 180 (1 - e u sin 2 _o )3/2 - 180

Ru L_[-1 45 (3 15 4'_ 15 e4 ]
rr 3 2 e 4 e 2 cos 4 _0 (177)

=-I-fr0- 7_ +_-e + _-_ - +1--_ ,/c°s 2°9 + 6-4 T-... .J

The length of a meridian quadrant is given by

rr -- [ I_r/2 R_(I- e 2) d " R 11 el) _¢_I dz ,

Qm = 7 Pm =I (I- e=sin=_ )31z ,e = e t - J-(1-e2z2)vi(1-zi)Cl-e =zi')
_' 0 "_r'l'/9... 0

= R (1-e 1) .- e2, e)= Re ( 1-e2 1+3 elsln:_° + _--_5e`sln4_° +_-_ eosin6_°

= n_ Re(1 _ e 2) 1 + _ + _-_e + _ +""2

nR(1_4e2_34 5 e6 .... )= _- , -6¥e - 2-_

n 1 1 2 i 3
= _-R. (1- _[ + T6[ + _-[ +'")

(178)
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The volume of the Earth spheroid is simply given by

4 R2 4 3
v = _ .R =,, _ _ R.(I-/) (179)

while the surface area follows from

S=4rrR R l+e2z 2 dz=2rtR Rp vJl+_ 2 +- sinh -1
e p e 6

0

I sinh-'e _ ' I in('+_/1+_--_) _= 2"R 2, 1+ V/_]= 2rtR o 1+ ,_-e_/l+

(12 4486 ) 2( 2 1243 _180)= 4_R _o 1- _, + i_ -_ ..... 4,_R, 1-_/+ _/+ T-_/ +...

These formulas will now be used to derive the Earth's dimensions and other Earth parameters.

Taking R o= 6378170 -+ 20 m and 1// = 298.30 ± 0.05 yields

e2 = 0.006693422

e 2 = 0.006738525

m = 0.003357949

n = 0.001678979

, e = 0.081 813 334

, e = 0.082 088 522

= 692_'627

= 346:'314

The mean radius is

_- _ 2 Ro + R v _ 6 371 043 --+ 21 m (181)
3

The radius for the geodetic latitude q = sin-kd 1/3 = 35 ° 15" 51:" 8 (_b = 35 ° 4' 59:' 5) is

J e2(1 --e2 ) R. I1-- 1 9 3 _R I =Ro 1 3-e 2 _ ___/ + /2+ /2+.. =6.371083±21m (182)

The radius for the geocentric latitude _5 = sin- 1%/1/3 = 35 ° 15" 51:'8 ( _0 = 35 ° 26" 45:'5) is

%/'1 e2 ' _ 1 i/2 73 'IR2= Ro 3-2e 2 - R, - _ /- _ --_-/ .... 6371019 ±21m
(183)

The radius for a sphere of equal area is

1 2 1 /3 11 )Rs= (S/4rr)*/2= R ° 1- _ / - _- +9--_ / + .... 6371041 + 21 m (184)

while the radius for a sphere of equal volume is

1 1 2Rv= (3V/4n)l/3= R (i -/')1/3=R 1 - --_- / - -_- / -- 5 /3 ) =6371035 ±21 m

(185)
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The surface area is

S = 4rtR_ l 1 - _f+ f':'+_ [

while the volume is given by

4 Ra 1021 3
V= _.--rr e (1 -,f) = (1.083225 + 0.000011) x m (187)

The radius of curvature at the pole is

2

pp = R, /Rp = Ro/(1 - {) = 6399624 -+ 24 m (188)

while the meridional radius of curvature at the equator is given by

pmo=R 2/Ro= Ro(1-/)2 = Ro(1-e 2)=6335478_+27m (189)P

_he length of an equatorial quadrant is

ff

Q" = T R.= 10018806 _+31m (190)

while the length of a meridional quadrant is

17 1 1 2 1 a+ (191)
Q== TR°(1 --_ /+ 1-6[ +-_/ ...)=10002020±34 m

Therefore the arc corresponding to 1° in longitude is at the equator

ff

vo = Q_/9o = _ Re= 111320.07 +-0.35 m (192)

while the arc corresponding to 1 ° in latitude is at the equator

ff rI

/_o = 18-----6-P_,, = _-6 Ro (1 - f)2 = 110574.95 + 0.47 m (193)

at the pole

and in the average

+... ) = (5.100711 +_0.000 034) x 10 14 m 2 (186)

rr rt R /(1- f) = 111694.51 ±0.41 m (194)
180 Pp= 18-----0- *

"_= Q_/90 = n I 1 2 I 3 _180 R,(1- _[ + _-6[ + -_-_-1 +...) = 111133.56+0.38m

(195)

Finally, a few series developments are given for the Earth radius, for the various definitions of

latitude, and for the radii of curvature:
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_5 = _0 _ 692/" 627 sin 2 q + 1:" 163 sin 4 _o =_,,,

_0 = 4_ + 692:" 627 sin 2 _5 + 1/" 163 sin 4 _5 +,,,

and

= _o - 346."314 sin 2_o+ 0."291 sin 4 _¥.,.

_o = _ + 346/" 314 sin 2_b+0f'291 sin 4 _b+...

furthermore

R

log Re

and

- 9.99927266 + 0.00072917 cos 2 _o _ 0.00000184 cos 4 _o +,,°

R
- 1 - 0.00336 9263 sin u qb + 0.00001 7028 sin 4 _5 - 0.000000096 sin 6 _5 +_'"

Re

= 1-0.003352330 sinus5 - 0.00000 4233 sin 2 2 4)+ 0.000000024 sin2_5 sin:2 q_+.,.

(196)

(197)

(198)

= 0.99832 1724 + 0.00167 6162 cos 2_ + 0.000002111 cos 4 _ + 0.00000 0003 cos 6 _ +.°.

O£

R = 6378 170.0 - 21489.7 sin: _5 + 108.6 sin 4 _5 - 0.6 sin 6 _5 2:"'

= 6378 170.0- 21381.7 sin: q_- 27.0 sin: 2 _ + 0.2 sin: _5 sin u 2 _5 +,,,

= 6367465.7 + 10690.8 cos 2 _o + 13.5 cos 4 _o + 0.0: cos 6_o+,.,

and

R
= 1 - 0.00332 4310 sin u q_ - 0.00002 7777 sin 4 _o - 0.00000 0241 sin 6 _o ....

R e

= 1 - 0.003352330 sin 2 _o _ 0.000007004 sin 2 2_5 + 0.000000060 sin u _ sin22 (5 +,,,

= 0.99832 0349 + 0.001676156 cos 2

(199)

(200)

+ 0.000003487 cos 4 _ + 0.000000008 cos 6 _ +,°.

(201)

01"

R = 6378 170.0 - 21203.0 sin 2 ¢ - 177.2 sin 4 _o - 1.5 sin 6 _o ....

=6378170.0- 21381.7 sin 2 _o - 44.7sin 2 2 _a + 0.4 sin 2 _o sin 2 2_a+...

=6367456.9+ i0690.8cos 2_o +22.2cos 4 _o +0.0s cos6 _a 4... (202)
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and

/_ = P__.m. -- 1+0.010040132sin: _o +0.000084004sin 4 _o

/_, Pmo

= 1.00505 1568- 0.00506 2068 cos 2 q' + 0.00001 0500 cos 4 ¢ T.-. (203)

2 4
110574.95+1110.19sin ¢+9.29sin _o +...

= 111 133.53- 559.74 cos 2 _o + 1.16 cos 4 _o T... (204)

v _ cos _o

v e R e

or

and

= 1.00083 8785 cos_° - 0.00083 9841 cos 3 _o

v= 111413.44cos _o -93.49cos 3_° + 0.12 cos 5_°

+ 0.00000 1059 cos 5 _o +...

(205)

(206)

P" = 1 + 0.003346711 sin: _o + 0.000016801 sin 4
Ro _o + 0.000000094 sin 6 _o +...

= 1 + 0.003363605 sin 2 _o - 0.000004224 sin: 2 _o - 0.000000023 sin: _o sin": 2 _o

= 1.00167 9685 - 0.00168 1800 cos 2 _o + 0.000002118 cos 4 _o - 0.00000 0003 cos 6

(207)
or

Pn =6378170"O+21345"9sin:_° +107"2sinai° + 0"6sin°_° +"'

=6378170.0+ 21453.6 sin2 _o _ 26.9sin 2 2 _o _ 0.1s sin 2 _o sin:2 _o +...

=6388883.3- 10726.8 cos 2 9 + 13.5 cos 4 _o .... (208)
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SUMMARY

An internally consistent system of astrodynamic constants is derived based upon theoretical

coupling relationships and the most recent available experimental data. A previously existing

discrepancy in the value of the gravitational parameter of the earth (as derived by different

methods) has been eliminated. Likewise, several inconsistencies in the previously available

system of lunar constants have been removed.

A new method of determining the ratio of the masses of the Earth and Moon has been derived

and the results are in agreement with other determinati cns.

An error study of each constant is presented; both relative and absolute probable errors are

listed.

The results of this study can be summarized in the following list of astrodynamic constants:
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1. GENERALCONSTANTS

1. Newton's gravitation constant:

G = 6.670 (1 +- 0.0007) x 10 -s = (6.670 + 0.005) x 10 -s cm 3 g-1 s-2(dyn cm 2g-2)

2. Velocity of light:

c= 299792.5 (1 ±3.3x 10 -7 )= 299792.5 ±0.1 km/s

3. Solar parallax (Sun's equatorial horizontal parallax):

_zo = 8."79414 (1 + 5.8 x 10 -6) = 8:'79414 ± 0."00005

4. Astronomical unit (mean Earth-Sun distance = R e/rto sin 1"'):

a. u. = 149598700 (1 ± 2.7 x 10 -6 ) = 149598700 ± 400 km

5. Light year (distance which light travels in a year = P c):

1. y.= 31556925.9747 c= (9.460530 +- 0.000003) x 10 12 km=63239.39+-0.15 a. u.

6. Parsec (distance in which 1 a. u. appears as 1"" = 1 a. u./sin 1"" ) :

pc = 206264.806247a. u.= (3.085695 ±0.000008) x 1013km= 3.261651 +-0.000008 l.y.

7. Light time for 1 a. u. :

r = a.u./c = 499.008 (1 ± 3.6 x 10 -s) = 499.008 ± 0.018 s

8. Constant of aberration:

K = 20."4956 (1 ± 3.5 x 10 -s) = 20:'4956 ± 0."0007

9. Obliquity of ecliptic

= 23°27"8:'26 - 46:'844 T- 0."0060 T 2 + 0."00183 T 3

cos _ = 0.917 3917 ; sin _ = 0.397 985 5 (1900.0)

10. Newcomb's constant of precession (per tropical century) :

p P0 - 5493.'62- 0Y00364 T = (N+ 2.'96)*
COS 6

11. Luni-solar precession in longitude:

P0=Po + p, = 5039."804+ 0."4930 T-0."00004 T 2 = (N+ 2".'72)

* N refers to Newcomb's precessional data
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12. Geodetic precession in longitude:

3
Pa = _- (v_/c)2 no= 1:'9188±0."0002 = (N+ 1:'92)

13. Observed luni-solar precession in longitude:

Pl =P0- pa= 5037;" 885+0:'4930T- 0"00004 T2 =(N+ 0:'80)

14. Planetary precession in right ascension:

_=-m + n cot_=12:'473-1:'8870 T-O:'OOO14 T 2= (N+0:'00)

15. General precession in longitude:

P=Pl- _ cos •=m cos _+n sin•= 5026:'441 + 2:'2229 T+ 0."00026 T2=(N+0:'80)

16. General precession in right ascension:

m= Pl cos •-_= 4609['236+ 2:'7945 T+ 0:'00012 T2= (N+ 0['73)

= 307." 2824 + 0.* 18630 + 0.* 000008 T 2 = (N + 0. s 0487)

17. General precession in declination:

n = Pl sin e = 2005['005- 0['8533 T- 0:'00037 T 2= (N + 0.':32)

= 133.* 6670 - 0." 05689 T - 0.* 000025 T2= (N+ 0.* 0213)

18. Mean siderial time rate (for 1950.0):

=7.29211585479x 10-Srad/s = 1.002737909294 d,/d(s,/s)

= 15.041 06863941 "/s (°/h) = 360.985 647 346 0 °/d

2. EARTH CONSTANTS

19. Semi-major axis of the Earth's orbit:

a s = 149598700 (1 _+ 2.7x 10_)= 149598700+ 400 km

20. Siderial mean orbital motion (for 1950.0):

n • = 0.985 609 108 0 °/d = 0.041 067 046 15 "'Is (°/h)

= 1.990986581 7 x 10 -7 rad/s
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21. Mean orbital velocity:

vs= ae_s = 29784.90 (1 ± 2.7 × 10 -6)= 29784.90±0.08 m/s

22. Mass ratio of the Sun to the Earth-Moon system:

Mo
v 328898.6 (1 :_ 1.6× 10 -s) = 328898.6 ± 5.2

M e + M4

23. Mass ratio of the Sun to the Earth:

v(l+K)= ?% -332947.6(1 ±2.0x 10 -s)= 332 947.6±6.7
Ms

24. Gravitational parameter of the Earth:

t_o = GMs = 398606.4 (1 ± 1.23 × 10 -s) = 398606.4 ± 4.9 kma/s 2

25. Mass:

= = 1027Ms 5.9761 × 1027(1 ± 7.2 × 10 -4) (5.9761 ± 0.0043) × g

26. Equatorial radius:

R o = 6378170 (1 • 3.14 x 10 -6 ) = 6378170 ± 20 m

27. Polar radius:

R =6356788(1 ±3.70x 10-6)= 6356788±24m
P

28. Flattening (oblateness, ellipticity):

[ Re- Re = 0.003 352 33 (1 ± 1.7 × 10 -4 ) = 0.003 352 33 ± 0.000000 56 = 1:(298.30 + 0.05)
Re

1-/= (1-e2)1/2= (1 +e 2)1/_- Rp /R e= 0.996647 67 (1± 5.6x 10 -7 )

29. First eccentricity of the meridian ellipse:

e = 0.081 81333 + 0.00000680

e2 = / (2 -/) = 0.006693 42 + 0.000001 11

30. Second eccentricity of the meridian ellipse:

= 0.082 088 52 -+ 0.000 006 87

e 2

ca= _ = 0.006738 53±0.00000113

31. Mean radius:

R- = (2 Re+ R ) /3=6371043 (1 5: 3.3× 10 -6)=6371043 ±21m
P
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32. Radius for geodetic latitude _0 = sin-1 _/1/3 = 35°15"517"8

R 1 = 6371 083 (1 ± 3.3 × 10 -6 ) = 6371 083 _-21 m

33. Radius for geocentric latitude g5 = sin-l\/1/3 = 35°15"51:'8

R 2 =6371019(1 +3.3× 10-6)= 6371019± 21m

34. Radius for sphere of same surface area:

Rs=6371041(1± 3.3× 10-6)= 6371041 _+ 21m

35. Radius for sphere of same volume:

Rv= 6371 035 (1±3.3× 10 -6 )=6371035 ±21m

36. Surface area:

10 TM 2S o = 5.100711 x (1 +-6.6x 10-0)= (5.100711 + 0.000034) x 1014m

37. Volume:

Vo = 1.083225 x 1021(1 +- 1.0x 10-s) = (1.083225 -+ 0.000011) × 1021m3

38. Mean density:

P-o = 5.5170 (1 +7.3x l0 -4)= 5.5170±0.0040 g/cm3

39. Angular velocity of the Earth's rotation:

l-/ = 7.292 115 14646 x 10-Srad/s = 1.002737811 89i rot/d

= 15.041 067 17837 "'/s (°/h)= 360.9856122808 °/d

40. Rotational velocity at the equator:

-5

_mRe =465-1035 (1 ±3.2x 10 )= 465.1035+0.0015 m/s

41. Centrifugal acceleration at the equator:

2 -5)_m Re = 0.03391588 (1± 3.2x 10 = 0.03391588±0.00000011 m/s 2

42. Centrifugal acceleration factor:

_2 3

"_o GM Re - 3461.369x 10-6(1 +-2.2x 10 -s)= (3461.369± 0.076) x l0 -a
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43. Oblateness coefficients of the Earth's potential:

I = 1623.48 x 10- 6(1 ± 1.8 × 10- 4) = (1623.48 ± 0.29) x 10- 6

6
K= V D= 8.85x 10-6

2
]2 = -3 J = 1082.32 x 10 -6 (1 +- 1.8 x 10 -4) = (1082.32 ± 0.19) x 10 - o

4 8 D=-2.36x 10-6
J' =- T_ K- 35

44. Coefficients of the Earth's gravity formula:

-6 -6

fi = 5302.92 x 10 ; y = - 5.85 x 10

45. Mass of the Earth's atmosphere:

M = P0. So = (10 332.275 kg/m 2 )" S •
atm g

= 5.270195 x 101s(1 +-6.6 × 10-6)= (5.270195 ±0.000035) × 10 Is kg

46. Relative mass of the Earth's atmosphere:

A = Mat m /Me= 0.88188 x 10-6(1 ± 7.3 x 10 -4) = (0.88188 ± 0.00064) x 10 -6

47. Gravity acceleration correction factor:

48.

X = go/(G Me/R2o ) = 0.998 165 66 (1 ± 4.0 x 10- 7) = 0.998 165 66 + 0.000 000 40

1
1-x=A+_-]-_ K = 1834.34x 10 -6(1 +-2.2x 10-4)= (1834.34+-0.40)× 10 -6

Gravity acceleration at the Earth's equator:

g° =9.780362(1+3.3x 10 -6 )=9.780362±0.000032 m/s 2

49. Dynamic oblateness:

C-A
H

C
- 3272.09 x 10 -6 (1 ± 1.6 × 10 -4) = (3272.09 ± 0.54) x 10 -6= 1/305.615 + 0.05

50. Moment of inertia parameter:

3 C ] 0.49616 (1 + 3.4 x 10 -4) = 0.49616 +-0.00017
2 M R2- H-

• o

51. Dimensionless moments of inertia:

Me _ =]u - =0.32969+_0.00011

C
= _I2/H = 0.33077 -40.00011
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52. Unit for the Earth's moments of inertia:

. 103s 4) = 2MeR 2 = 2.43114 x (1 +-7.3x 10- (2.43114 +- 0.0018) x 103Skg m

53. Earth's moments of inertia:

A = 0.801 52 x 103s(1 ± 1.07 x 10 -3 ) = (0.801 52 +- 0.00086) x 103Skg m 2

C = 0.80415 x 10as(1 -+ 1.07 x 10 -3) =(0.80415 ± 0.00086) x 103Skg m 2

C-A = 2.6313 x 103s(1 +- 9;1 × 10 -4 ) = (2.6313 +- 0.0024) x 103Skg m u

54. Angular momentum:

= = i0 _3C _ 5.8640 × I0_3(I ± 1.07 × 10 -3 ) (5.8640 +-0.0063) x kg m2/s

55. Rotational energy:

1 1029 a) 1029 m 2
C_ 2 = 2.1380× (1 +-1.07 × 10- = 2.1380±0,0023) x kg /s2(joule)

56. Circular velocity at the Earth's equator:

v¢l, = X/_---_,= 7905.404 (1 + 7.7 x 10 -6) = 7905.404 +- 0.061 m/s

3. LUNAR CONSTANTS

57. Mean observed distance from the Earth:

T = 384402.0 (1 ± 2.6 x 10 -6 ) = 384402.0 +- 1.0 km

58. Relative mean lunar distance:

-6

_9/R,=l/sin% = 60.26838 (1 + 5.8 x 10 )=60.26838±0.00035

59. Constant part of the sine of the perturbed lunar parallax :

, sin n,
n, = = 3422."438 (1 + 5.8 x 10 -6) = 3422."438 + 0."020

sln 1 "" - -

60. Mean perturbed equatorial horizontal parallax:

n, = 3422:'595 (1 -+ 5.8 x 10 -6 ) = 3422:'595 + 0:'020

61. Semi-major axis of the Moon' s orbit:

a, = 1.000907681 _ = 384750.9 (1_+ 2.6× 10 -6)= 384750.9-+ 1.0kin

62. Siderial mean orbital motion (for 1950.0):

n, = 13.1763582598 °/d=0.549014912685 "'/s (°/h)

-6
= 2.66169940799 × 10 rad/s
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63. Mean orbital velocity:

v, =aq n,= 1024.091 (1+-2.9x 10 -6 )= 1024.091±0.003m/s

64. Lunar inequality in the Moon' s ecliptic longitude:

L = 6:'4439 (1 ± 3.0 x 10 -4 ) = 6:'4439 ± 0:'0019

65. Parallactic inequality in the Moon's ecliptic longitude:

P. = 124:'986 (1 ± 3.3 × 10 -s) - 124:'986 ± 0"004

66. Mass ratio of the Earth to the Moon:

1/K = M®/M, = 81.250(I ±_3.0x i0-4)= 81.250±0.024

67. Mass ratio of the Earth-Moon system to the Earth:

I+K= (Ms+M,)/M® = 1.0123077 (1+3.7x 10 .6 )= 1.0123077 ±0.0000037

68. Gravitational parameter of the Moon:

_, = GA4, = 4905.92 (1 + 3.1x 10 .4 )= 4905.92 +1.52 kma/s2

69. Mass:

M, = 7.3552 x 10 ms (1 ± 1.02 × 10 -3) = (7.3552 +- 0.0075) x 10 2s g

70. Moon's semi-diameter at mean distance:

s, = 932:'72 (1 ± 1.0 x 10 -4 ) = 932:'72 ± 0:'09

71. Relative radius of the visible disk of the Moon:

k = R, /R,_- 0.2725289(1 ± 1.0x 10-4)= 0.2725289_ + 0.0000273

72. Radius of the visible disk of the Moon:

b + c 1738 236 (1 _+ 1.0 x 10- 4) = 1738 236 ± 174 m
R, 2

73. Longest semi-axis directed to the Earth:

-4

a= R, /0.9995918= 1738946 (1±1,07× 10 )= 1738946-+ 186m

74. Medium semi-axis in orbital direction:

b= 0.9998116 a = 1738618 (1+- 1.20x 10-4)= 1738618± 209m

75. Shortest semi-axis (rotational or polar radius):

c= 0.9993720 a= 1737854 (1 -+ 1.08× 10-4)= 1737854± 188m
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76. Volume:

4 102s
V_..-_- rr abc= 2.200 86x (1± 3.35x 10 -4 )= (2.20086-+ 0.00074) x 102Scm 3

77. Mean density:

_-, = 3.3420 (1 ± 1.5 x 10-3) = 3.3420 ± 0.0050 g/cm 3

78. Surface density:

p = 3.290 g/cm3
0

79. Central density:

Pc = 3.420 g/cm 3

80. Inhomogenity factor of the Moon:

A = 0.1991 (1 +- 5.0 x 10 -4 ) = 0.1991 5:0.0001

81. Dimensionless moment of inertia parameters:

C-B

[ C-A
- 0.70 (1 _- 2.86 × 10 -2 ) = 0.70 ± 0.02

a = --

C-B

C
- = 0.0004395 (1 + 3.03 x 10 -a) = 0.0004395 _+ 0.0000133

/3 C - A 0.0006279 (1 ± 1.6 x 10 -4 ) = 0.0006279 + 0.000 0001
C

B-A

Y C
- 0.0001884 (1 +- 6.85 x 10 -2 ) = 0.0001884 -+ 0.0000129

3 C

2 31q a "_ =0.5972 ( 1 _+ 5.0 x 10 -4) = 0.5972 + 0.0003

3 C- 1/2 (A+B)

Mla2
= 0.0003187 (i + 1.38 x 10 -2 ) = 0.0003187 _+ 0.0000044

K -

3 B-A

2 M, a2
= 0.0001125 (1 ± 6.84 x 10 -2 ) = 0.0001125 ± 0.0000077

L
3C-A

2 Mq a2
0.0003750 (1 _+2.1 x 10 -3) = 0.0003750.± 0.0000008

82. Dimensionless moment of inertia differences:

C-A
= 0.0002500 (1 +- 2.1 × 10 -3 ) = 0.0002500 ± 0.0000005

aTM,

C - B

= 0.0001750 (1 +- 3.09× 10 u) = 0.0001750 +- 0.0000054
a TM,
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82. Dimensionless moment of inertia differences (Continued):

B-A

M, a-_ = 0.0000750(1 ± 6.84x 10-2)= 0.0000750± 0.0000051

83. Dimensionless moments of inertia:

A

Mqa
--_r- = 0.397877(1 +5.0x 10 -4 )= 0.397877 +- 0.00020

B

M, a_ =0"397952 (1± 5:0× 10 -4) = 0.397952+-0-00020

C - + 0.00020
hi, a T =0"398127(1 ±5.0× 10 a)= 0.398127 _

84. Axial ratios of the Moon:

b ,/a = 1 l+y
0.9998116 (1 +- 1.3 × 10 -s) = 0.9998116 ± 0.0000129

a = 1 l+y

1

a =Ri/a =

= 0.9993720 (1 ± 1.0× 10 -6) = 0.9993720 +- 0.0000010

-_- + = 0.9995 918 (1 ± 7,0 × 10 -6 ) = 0.9995918 ± 0.0000070

85. Oblateness coefficients of the potential function of the Moon:

C- 1/2(A + B) 2

]2 = hi, a2 "3 ]
= 0.0002125 + 0.0000029

(2) B - A 1

]2 = 4 M,a2 = _ K = 0.0000188+-0.0000013

86. Unit for the Moon's moments of inertia:

hiQ a 2 = 2.22416 x 10as(1 ±l.2x 10-3)=(2.22416 _+0.0027) x 103s kgm 2

87. Moment of inertia differences:

1
C - (A + B) = 0.000473x 10as(1 -+ 1.50 x 10 -2 )=(0.000473±0.000007)x 103Skgm

= 103s 2) = _ 103s 2B-A 0.000167 x (1 ± 6.96x 10- (0.000167 + 0.000012) x kgm

88. Moon's moments of inertia:

A = 0.88494 x 10 as (1 ± 1.73 x 10 -a) = (0.88494 ± 0.001 53) x 10aSkg m 2

= = 103s m2B 0.88511 x 103s(1 +- 1.73x 10 -3) (0.88511 +- 0.001 53) x kg

= = 103s 2C 0.88550x 103s(1 + 1.73x 10 -3 ) (0.88550±0.00153)× kgm
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